6,623 research outputs found

    Hybrid - Particle Swarm Optimization and Differential Evolution for Reduction of Real Power Loss and Preservation of Voltage Stability Limits

    Get PDF
    In this paper, a Hybrid algorithm based on - Particle Swarm Optimization (PSO) and Differential Evolution (DE) is used for solving reactive power dispatch problem. It needs progressing the population to create the individual optimal positions by means of the PSO algorithm, and then the algorithm come in DE phase and progresses the individual optimal positions by smearing the DE algorithm. In order to comprehend co-evolution of DE and PSO algorithm, an information-sharing mechanism is presented, which progresses the capability of the algorithm to fence out of the local optimum. Additionally, in optimization procedure, we espouse the hybrid inertia weight stratagem, time-varying acceleration coefficients tactic and arbitrary scaling factor stratagem. The proposed Hybrid algorithm based on - Particle Swarm Optimization and Differential Evolution (H-PSDE) has been tested on standard IEEE 30, 57,118 bus test systems and simulation results show clearly about the better performance of the proposed algorithm in reducing the real power loss. Keywords:Optimal Reactive Power; Transmission loss; Particle Swarm Optimization; Differential Evolution; Global Search; Local Search; Inertia Weight

    Swarm Intelligence and Evolutionary Approaches for Reactive Power and Voltage Control

    Get PDF
    This paper presents a comparison of swarm intelligence and evolutionary techniques based approaches for minimization of system losses and improvement of voltage profiles in a power network. Efficient distribution of reactive power in an electric network can be achieved by adjusting the excitation on generators, the on-load tap changer positions of transformers, and proper switching of discrete portions of inductors or capacitors. This is a mixed integer non-linear optimization problem where metaheuristics techniques have proven suitable for providing optimal solutions. Four algorithms explored in this paper include differential evolution (DE), particle swarm optimization (PSO), a hybrid combination of DE and PSO, and a mutated PSO (MPSO) algorithm. The effectiveness of these algorithms is evaluated based on their solution quality and convergence characteristic. Simulation studies on the Nigerian power system show that a PSO based solution is more effective than a DE approach in reducing real power losses while keeping the voltage profiles within acceptable limits. The results also show that MPSO allows for further reduction of the real power losses while maintaining a satisfactory voltage profile

    Nonlinear finite element analysis of reinforced concrete beams strengthened with textile fine grained mortar

    Get PDF
    Nowadays, there was an increasing need of repairing and upgrading the reinforced concrete (RC) structure due to the deterioration of the structure. The fibre reinforced polymer (FRP) was commonly used for structural retrofitting purposes. However, owing to the debonding of the FRP from the concrete substrate and high cost of epoxy, it was gradually replaced with textile fine grained mortar (TFGM) nowadays. The TFGM system has been widely used in the construction field nowadays to repair the structure. Our study focus on the strain performances of the concrete surface, steel reinforcement and the textile itself. There were many proven experimental results showing that the TFGM was more effective than the other strengthening method such as FRP plate method. The experimental work done by previous researcher on investigation of strain performances of the concrete surface, steel reinforcement and the textile itself which consists of eleven (11) RC beams with dimension 150 x 200 x 2500 mm. The RC beams were strengthened with FGM and TFGM with 4 layers. The investigation continued with the finite element (FE) strain performance analysis with using Advanced Tool for Engineering Nonlinear Analysis (ATENA) software. The strain of the concrete surface, steel reinforcement and the textile were measured at a mid-point of RC beam. Then, the results of the finite element analysis software ATENA compared against the experimental results. The strain performances of the concrete and steel reinforcement improved noticeably when the number of layers of textile reinforcement used increased

    The effect of data preprocessing on the performance of artificial neural networks techniques for classification problems

    Get PDF
    The artificial neural network (ANN) has recently been applied in many areas, such as medical, biology, financial, economy, engineering and so on. It is known as an excellent classifier of nonlinear input and output numerical data. Improving training efficiency of ANN based algorithm is an active area of research and numerous papers have been reviewed in the literature. The performance of Multi-layer Perceptron (MLP) trained with back-propagation artificial neural network (BP-ANN) method is highly influenced by the size of the data-sets and the data-preprocessing techniques used. This work analyzes the advantages of using pre-processing datasets using different techniques in order to improve the ANN convergence. Specifically Min-Max, Z-Score and Decimal Scaling Normalization preprocessing techniques were evaluated. The simulation results showed that the computational efficiency of ANN training process is highly enhanced when coupled with different preprocessing techniques

    A new design algorithm for hybrid active power filter

    Get PDF
    The correct determination of the parameters of Hybrid Active Power Filter (HAPF) plays a decisive role in its performance. Therefore, this paper proposes a new design algorithm for HAPF based on the Social Spider Algorithm (SSA). This algorithm has the advantage that it is possible to determine the parameters of both the power circuit part and the control circuit part of HAPF. The achieved results are multi-purpose, such as: minimum total harmonic distortion of the supply current and source voltage, the maximum reactive power compensation into the system and satisfy many constraints such as: system stability, resonance conditions of the branches and the limits of the parameters. Compared to traditional design method using the Particle Swarm Optimization algorithm, the proposed algorithm shows the advantages of smaller total harmonic distortion of supply current and source voltage, and higher reactive power compensation into the grid while still meeting the constraints

    Radiation pattern reconfigurable fm antenna

    Get PDF
    In this work, a radiation pattern reconfigurable antenna design using compact printed spiral monopoles that operates at 102 MHz is reported. The proposed antenna changes its radiation behaviour that responds towards a desired direction with the use of RF switches. The antenna is printed on a 76.6mm × 50mm PCB layer providing more than 20MHz bandwidth at -10 dB threshold and is easily fabricated with low manufacturing cost. The antenna was also simulated on 500mm × 500mm ground plane that represents the roof top of a vehicl

    Swarm Intelligence Based Multi-phase OPF For Peak Power Loss Reduction In A Smart Grid

    Full text link
    Recently there has been increasing interest in improving smart grids efficiency using computational intelligence. A key challenge in future smart grid is designing Optimal Power Flow tool to solve important planning problems including optimal DG capacities. Although, a number of OPF tools exists for balanced networks there is a lack of research for unbalanced multi-phase distribution networks. In this paper, a new OPF technique has been proposed for the DG capacity planning of a smart grid. During the formulation of the proposed algorithm, multi-phase power distribution system is considered which has unbalanced loadings, voltage control and reactive power compensation devices. The proposed algorithm is built upon a co-simulation framework that optimizes the objective by adapting a constriction factor Particle Swarm optimization. The proposed multi-phase OPF technique is validated using IEEE 8500-node benchmark distribution system.Comment: IEEE PES GM 2014, Washington DC, US
    • …
    corecore