31 research outputs found

    Development, Control, and Empirical Evaluation of the Six-Legged Robot SpaceClimber Designed for Extraterrestrial Crater Exploration

    Get PDF
    In the recent past, mobile robots played an important role in the field of extraterrestrial surface exploration. Unfortunately, the currently available space exploration rovers do not provide the necessary mobility to reach scientifically interesting places in rough and steep terrain like boulder fields and craters. Multi-legged robots have proven to be a good solution to provide high mobility in unstructured environments. However, space missions place high demands on the system design, control, and performance which are hard to fulfill with such kinematically complex systems. This thesis focuses on the development, control, and evaluation of a six-legged robot for the purpose of lunar crater exploration considering the requirements arising from the envisaged mission scenario. The performance of the developed system is evaluated and optimized based on empirical data acquired in significant and reproducible experiments performed in a laboratory environment in order to show thecapability of the system to perform such a task and to provide a basis for the comparability with other mobile robotic solutions

    Design and development of a hominid robot with local control in its adaptable feet to enhance locomotion capabilities

    Get PDF
    With increasing mechanization of our daily lives, the expectations and demands in robotic systems increase in the general public and in scientists alike. In recent events such as the Deepwater Horizon''-accident or the nuclear disaster at Fukushima, mobile robotic systems were used, e.g., to support local task forces by gaining visual material to allow an analysis of the situation. Especially the Fukushima example shows that the robotic systems not only have to face a variety of different tasks during operation but also have to deal with different demands regarding the robot's mobility characteristics. To be able to cope with future requirements, it seems necessary to develop kinematically complex systems that feature several different operating modes. That is where this thesis comes in: A robotic system is developed, whose morphology is oriented on chimpanzees and which has the possibility due to its electro-mechanical structure and the degrees of freedom in its arms and legs to walk with different gaits in different postures. For the proposed robot, the chimpanzee was chosen as a model, since these animals show a multitude of different gaits in nature. A quadrupedal gait like crawl allows the robot to traverse safely and stable over rough terrain. A change into the humanoid, bipedal posture enables the robot to move in man-made environments. The structures, which are necessary to ensure an effective and stable locomotion in these two poses, e.g., the feet, are presented in more detail within the thesis. This includes the biological model and an abstraction to allow a technical implementation. In addition, biological spines are analyzed and the development of an active, artificial spine for the robotic system is described. These additional degrees of freedom can increase the robot's locomotion and manipulation capabilities and even allow to show movements, which are not possible without a spine. Unfortunately, the benefits of using an artificial spine in robotic systems are nowadays still neglected, due to the increased complexity of system design and control. To be able to control such a kinematically complex system, a multitude of sensors is installed within the robot's structures. By placing evaluation electronics close by, a local and decentralized preprocessing is realized. Due to this preprocessing is it possible to realize behaviors on the lowest level of robot control: in this thesis it is exemplarily demonstrated by a local controller in the robot's lower leg. In addition to the development and evaluation of robot's structures, the functionality of the overall system is analyzed in different environments. This includes the presentation of detailed data to show the advantages and disadvantages of the local controller. The robot can change its posture independently from a quadrupedal into a bipedal stance and the other way around without external assistance. Once the robot stands upright, it is to investigate to what extent the quadrupedal walking pattern and control structures (like the local controller) have to be modified to contribute to the bipedal walking as well

    Autonomous Behaviors With A Legged Robot

    Get PDF
    Over the last ten years, technological advancements in sensory, motor, and computational capabilities have made it a real possibility for a legged robotic platform to traverse a diverse set of terrains and execute a variety of tasks on its own, with little to no outside intervention. However, there are still several technical challenges to be addressed in order to reach complete autonomy, where such a platform operates as an independent entity that communicates and cooperates with other intelligent systems, including humans. A central limitation for reaching this ultimate goal is modeling the world in which the robot is operating, the tasks it needs to execute, the sensors it is equipped with, and its level of mobility, all in a unified setting. This thesis presents a simple approach resulting in control strategies that are backed by a suite of formal correctness guarantees. We showcase the virtues of this approach via implementation of two behaviors on a legged mobile platform, autonomous natural terrain ascent and indoor multi-flight stairwell ascent, where we report on an extensive set of experiments demonstrating their empirical success. Lastly, we explore how to deal with violations to these models, specifically the robot\u27s environment, where we present two possible extensions with potential performance improvements under such conditions

    A scalable, modular leg design for multi-legged stair climbing robots

    Get PDF
    Improving robustness of walking robots has always been problematic. Their complex kinematics and locomotion has always been prone to damage: a broken cable, an unstable foothold or a wrong set of parameters has been an everlasting source of frustration. Nature developed an extraordinary robustness through redundancy and fast adaptation. Theories about decentralized nervous systems has inspired this paper with a novel approach. The presented solution aims at relocating low-level walking behaviours to a network of computers and, more exactly, into the robots individual legs. This paper will not cover the full scope of the software implementation (this is a eld found especially in modular robotics), but presents how such an encapsulated leg with all necessary hardware is built and focuses on the mechanical and kinematic aspect of such legs. It highlights how a robotic leg needs to be designed to tackle structured environments serves as explanatory guide through the design process of legs with integrated PCU and sensors

    Design and Experimental Evaluation of a Hybrid Wheeled-Leg Exploration Rover in the Context of Multi-Robot Systems

    Get PDF
    With this dissertation, the electromechanic design, implementation, locomotion control, and experimental evaluation of a novel type of hybrid wheeled-leg exploration rover are presented. The actively articulated suspension system of the rover is the basis for advanced locomotive capabilities of a mobile exploration robot. The developed locomotion control system abstracts the complex kinematics of the suspension system and provides platform control inputs usable by autonomous behaviors or human remote control. Design and control of the suspension system as well as experimentation with the resulting rover are in the focus of this thesis. The rover is part of a heterogeneous modular multi-robot exploration system with an aspired sample return mission to the lunar south pole or currently hard-to-access regions on Mars. The multi-robot system pursues a modular and reconfigurable design methodology. It combines heterogeneous robots with different locomotion capabilities for enhanced overall performance. Consequently, the design of the multi-robot system is presented as the frame of the rover developments. The requirements for the rover design originating from the deployment in a modular multi-robot system are accentuated and summarized in this thesis

    Posture control of a low-cost commercially available hexapod robot for uneven terrain locomotion

    Get PDF
    Legged robots hold the advantage on uneven and irregular terrain, where they exhibit superior mobility over other terrestrial, mobile robots. One of the fundamental ingredients in achieving this exceptional mobility on uneven terrain is posture control, also referred to as attitude control. Many approaches to posture control for multi-legged robots have been taken in the literature; however, the majority of this research has been conducted on custom designed platforms, with sophisticated hardware and, often, fully custom software. Commercially available robots hardly feature in research on uneven terrain locomotion of legged robots, despite the significant advantages they pose over custom designed robots, including drastically lower costs, reusability of parts, and reduced development time, giving them the serious potential to be employed as low-cost research and development platforms. Hence, the aim of this study was to design and implement a posture control system on a low-cost, commercially available hexapod robot – the PhantomX MK-II – overcoming the limitations presented by the lower cost hardware and open source software, while still achieving performance comparable to that exhibited by custom designed robots. For the initial controller development, only the case of the robot standing on all six legs was considered, without accounting for walking motion. This Standing Posture Controller made use of the Virtual Model Control (VMC) strategy, along with a simple foot force distribution rule and a direct force control method for each of the legs, the joints of which can only be position controlled (i.e. they do not have torque control capabilities). The Standing Posture Controller was experimentally tested on level and uneven terrain, as well as on a dynamic balance board. Ground truth measurements of the posture during testing exhibited satisfactory performance, which compared favourably to results of similar tests performed on custom designed platforms. Thereafter, the control system was modified for the more general case of walking. The Walking Posture Controller still made use of VMC for the high-level posture control, but the foot force distribution was expanded to also account for a tripod of ground contact legs during walking. Additionally, the foot force control structure was modified to achieve compliance control of the legs during the swing phase, while still providing direct force control during the stance phase, using the same overall control structure, with a simple switching strategy, all without the need for torque control or modification of the motion control system of the legs, resulting in a novel foot force control system for low-cost, legged robots. Experimental testing of the Walking Posture Controller, with ground truth measurements, revealed that it improved the robot’s posture response by a small amount when walking on flat terrain, while on an uneven terrain setup the maximum roll and pitch angle deviations were reduced by up to 28.6% and 28.1%, respectively, as compared to the uncompensated case. In addition to reducing the maximum deviations on uneven terrain, the overall posture response was significantly improved, resulting in a response much closer to that observed on flat terrain, throughout much of the uneven terrain locomotion. Comparing these results to those obtained in similar tests performed with more sophisticated, custom designed robots, it is evident that the Walking Posture Controller exhibits favourable performance, thus fulfilling the aim of this study.Dissertation (MEng)--University of Pretoria, 2018.Mechanical and Aeronautical EngineeringMEngUnrestricte

    Experimental Methods To Support Robot Behavior Design For Legged Locomotion On Granular Media

    Get PDF
    Most models of legged locomotion assume a rigid ground contact, but this is not a reasonable assumption for robots in unstructured, outdoor environments, and especially not for field robots in dry desert environments. Locomotion on sand, a highly dissipative substrate, presents the additional challenge of a high energetic cost of transport. Many legged robots can be adapted for desert locomotion by simple morphological changes like increasing foot size or gearing down the motors. However, the Minitaur robot has direct-drive (no gearbox) legs which are sensitive enough to measure ground properties of interest to geoscientists, and its legs would lose their sensitivity if they were geared down or the footsize increased substantially. This thesis has two main contributions. First, a controller for jumping on sand with a direct-drive robot that saves significant energy in comparison to a nominal compression-extension Raibert-style controller without sacrificing jump height. This controller was developed by examining the complex interaction between the jumping leg and the ground, and devising a force to add to the leg controller which will push the robot’s foot into a more favorable state that does not transfer as much energy to the ground. The second contribution is a ground emulator robot which can be programmed to exert ground force functions of arbitrary shape. With the ground emulator, it is possible for a robot on a linear rail to jump dozens of times per experiment, whereas traditional experiments on granular media would require the ground to be reset between individual jumps. Results from the simulation experiments used to develop the controller and the ground emulator experiments used to test it on a physical robot leg are validated with experiments on a prepared granular media bed. Finally, the contributions of this thesis are contextualized in a broader project of building explainable artificially intelligent systems by composing robust, mostly reactive controllers

    Climbing and Walking Robots

    Get PDF
    With the advancement of technology, new exciting approaches enable us to render mobile robotic systems more versatile, robust and cost-efficient. Some researchers combine climbing and walking techniques with a modular approach, a reconfigurable approach, or a swarm approach to realize novel prototypes as flexible mobile robotic platforms featuring all necessary locomotion capabilities. The purpose of this book is to provide an overview of the latest wide-range achievements in climbing and walking robotic technology to researchers, scientists, and engineers throughout the world. Different aspects including control simulation, locomotion realization, methodology, and system integration are presented from the scientific and from the technical point of view. This book consists of two main parts, one dealing with walking robots, the second with climbing robots. The content is also grouped by theoretical research and applicative realization. Every chapter offers a considerable amount of interesting and useful information

    Towards Agility: Definition, Benchmark and Design Considerations for Small, Quadrupedal Robots

    Get PDF
    Agile quadrupedal locomotion in animals and robots is yet to be fully understood, quantified or achieved. An intuitive notion of agility exists, but neither a concise definition nor a common benchmark can be found. Further, it is unclear, what minimal level of mechatronic complexity is needed for this particular aspect of locomotion. In this thesis we address and partially answer two primary questions: (Q1) What is agile legged locomotion (agility) and how can wemeasure it? (Q2) How can wemake agile legged locomotion with a robot a reality? To answer our first question, we define agility for robot and animal alike, building a common ground for this particular component of locomotion and introduce quantitative measures to enhance robot evaluation and comparison. The definition is based on and inspired by features of agility observed in nature, sports, and suggested in robotics related publications. Using the results of this observational and literature review, we build a novel and extendable benchmark of thirteen different tasks that implement our vision of quantitatively classifying agility. All scores are calculated from simple measures, such as time, distance, angles and characteristic geometric values for robot scaling. We normalize all unit-less scores to reach comparability between different systems. An initial implementation with available robots and real agility-dogs as baseline finalize our effort of answering the first question. Bio-inspired designs introducing and benefiting from morphological aspects present in nature allowed the generation of fast, robust and energy efficient locomotion. We use engineering tools and interdisciplinary knowledge transferred from biology to build low-cost robots able to achieve a certain level of agility and as a result of this addressing our second question. This iterative process led to a series of robots from Lynx over Cheetah-Cub-S, Cheetah-Cub-AL, and Oncilla to Serval, a compliant robot with actuated spine, high range of motion in all joints. Serval presents a high level of mobility at medium speeds. With many successfully implemented skills, using a basic kinematics-duplication from dogs (copying the foot-trajectories of real animals and replaying themotion on the robot using a mathematical interpretation), we found strengths to emphasize, weaknesses to correct and made Serval ready for future attempts to achieve even more agile locomotion. We calculated Servalâs agility scores with the result of it performing better than any of its predecessors. Our small, safe and low-cost robot is able to execute up to 6 agility tasks out of 13 with the potential to reachmore after extended development. Concluding, we like to mention that Serval is able to cope with step-downs, smooth, bumpy terrain and falling orthogonally to the ground
    corecore