209 research outputs found

    Environmental Monitoring using Autonomous Vehicles: A Survey of Recent Searching Techniques

    Get PDF
    Autonomous vehicles are becoming an essential tool in a wide range of environmental applications that include ambient data acquisition, remote sensing, and mapping of the spatial extent of pollutant spills. Among these applications, pollution source localization has drawn increasing interest due to its scientific and commercial interest and the emergence of a new breed of robotic vehicles capable of performing demanding tasks in harsh environments without human supervision. In this task, the aim is to find the location of a region that is the source of a given substance of interest (e.g. a chemical pollutant at sea or a gas leakage in air) using a group of cooperative autonomous vehicles. Motivated by fast paced advances in this challenging area, this paper surveys recent advances in searching techniques that are at the core of environmental monitoring strategies using autonomous vehicles

    Source Seeking Control of Unicycle Robots with 3-D-Printed Flexible Piezoresistive Sensors

    Get PDF
    We present the design and experimental validation of source seeking control algorithms for a unicycle mobile robot that is equipped with novel 3D-printed flexible graphene-based piezoresistive airflow sensors. Based solely on a local gradient measurement from the airflow sensors, we propose and analyze a projected gradient ascent algorithm to solve the source seeking problem. In the case of partial sensor failure, we propose a combination of Extremum-Seeking Control with our projected gradient ascent algorithm. For both control laws, we prove the asymptotic convergence of the robot to the source. Numerical simulations were performed to validate the algorithms and experimental validations are presented to demonstrate the efficacy of the proposed methods

    Environmental feature exploration with a single autonomous vehicle

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this record.In this paper, a sliding mode based guidance strategy is proposed for the control of an autonomous vehicle. The aim of the autonomous vehicle deployment is the study of unknown environmental spatial features. The proposed approach allows the solution of both boundary tracking and source seeking problems with a single autonomous vehicle capable of sensing the value of the spatial field at its position. The movement of the vehicle is controlled through the proposed guidance strategy, which is designed on the basis of the collected measurements without the necessity of pre-planning or human intervention. Moreover, no a priori knowledge about the field and its gradient is required. The proposed strategy is based on the so-called sub-optimal sliding mode controller. The guidance strategy is demonstrated by computer based simulations and a set of boundary tracking experimental sea trials. The efficacy of the algorithm to autonomously steer the C-Enduro surface vehicle to follow a fixed depth contour in a dynamic coastal region is demonstrated by the results from the trial described in this paper.Natural Environment Research Council (NERC)Defence Science and Technology Laboratory (DSTL)Innovate UKAutonomous Surface Vehicles (ASV) Ltd., Portcheste

    Boundary tracking and source seeking of oceanic features using autonomous vehicles

    Get PDF
    The thesis concerns the study and the development of boundary tracking and source seeking approaches for autonomous vehicles, specifically for marine autonomous systems. The underlying idea is that the characterization of most environmental features can be posed from either a boundary tracking or a source seeking perspective. The suboptimal sliding mode boundary tracking approach is considered and, as a first contribution, it is extended to the study of three dimensional features. The approach is aimed at controlling the movement of an underwater glider tracking a three-dimensional underwater feature and it is validated in a simulated environment. Subsequently, a source seeking approach based on sliding mode extremum seeking ideas is proposed. This approach is developed for the application to a single surface autonomous vehicle, seeking the source of a static or dynamic two dimensional spatial field. A sufficient condition which guarantees the finite time convergence to a neighbourhood of the source is introduced. Furthermore, a probabilistic learning boundary tracking approach is proposed, aimed at exploiting the available preliminary information relating to the spatial phenomenon of interest in the control strategy. As an additional contribution, the sliding mode boundary tracking approach is experimentally validated in a set of sea-trials with the deployment of a surface autonomous vehicle. Finally, an embedded system implementing the proposed boundary tracking strategy is developed for future installation on board of the autonomous vehicle. This work demonstrates the possibility to perform boundary tracking with a fully autonomous vehicle and to operate marine autonomous systems without remote control or pre-planning. Conclusions are drawn from the results of the research presented in this thesis and directions for future work are identified

    Autonomous Behaviors With A Legged Robot

    Get PDF
    Over the last ten years, technological advancements in sensory, motor, and computational capabilities have made it a real possibility for a legged robotic platform to traverse a diverse set of terrains and execute a variety of tasks on its own, with little to no outside intervention. However, there are still several technical challenges to be addressed in order to reach complete autonomy, where such a platform operates as an independent entity that communicates and cooperates with other intelligent systems, including humans. A central limitation for reaching this ultimate goal is modeling the world in which the robot is operating, the tasks it needs to execute, the sensors it is equipped with, and its level of mobility, all in a unified setting. This thesis presents a simple approach resulting in control strategies that are backed by a suite of formal correctness guarantees. We showcase the virtues of this approach via implementation of two behaviors on a legged mobile platform, autonomous natural terrain ascent and indoor multi-flight stairwell ascent, where we report on an extensive set of experiments demonstrating their empirical success. Lastly, we explore how to deal with violations to these models, specifically the robot\u27s environment, where we present two possible extensions with potential performance improvements under such conditions

    Advances towards behaviour-based indoor robotic exploration

    Get PDF
    215 p.The main contributions of this research work remain in object recognition by computer vision, by one side, and in robot localisation and mapping by the other. The first contribution area of the research address object recognition in mobile robots. In this area, door handle recognition is of great importance, as it help the robot to identify doors in places where the camera is not able to view the whole door. In this research, a new two step algorithm is presented based on feature extraction that aimed at improving the extracted features to reduce the superfluous keypoints to be compared at the same time that it increased its efficiency by improving accuracy and reducing the computational time. Opposite to segmentation based paradigms, the feature extraction based two-step method can easily be generalized to other types of handles or even more, to other type of objects such as road signals. Experiments have shown very good accuracy when tested in real environments with different kind of door handles. With respect to the second contribution, a new technique to construct a topological map during the exploration phase a robot would perform on an unseen office-like environment is presented. Firstly a preliminary approach proposed to merge the Markovian localisation in a distributed system, which requires low storage and computational resources and is adequate to be applied in dynamic environments. In the same area, a second contribution to terrain inspection level behaviour based navigation concerned to the development of an automatic mapping method for acquiring the procedural topological map. The new approach is based on a typicality test called INCA to perform the so called loop-closing action. The method was integrated in a behaviour-based control architecture and tested in both, simulated and real robot/environment system. The developed system proved to be useful also for localisation purpose

    Motion planning for constrained mobile robots in unknown environments

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Sensor Network Based Collision-Free Navigation and Map Building for Mobile Robots

    Full text link
    Safe robot navigation is a fundamental research field for autonomous robots including ground mobile robots and flying robots. The primary objective of a safe robot navigation algorithm is to guide an autonomous robot from its initial position to a target or along a desired path with obstacle avoidance. With the development of information technology and sensor technology, the implementations combining robotics with sensor network are focused on in the recent researches. One of the relevant implementations is the sensor network based robot navigation. Moreover, another important navigation problem of robotics is safe area search and map building. In this report, a global collision-free path planning algorithm for ground mobile robots in dynamic environments is presented firstly. Considering the advantages of sensor network, the presented path planning algorithm is developed to a sensor network based navigation algorithm for ground mobile robots. The 2D range finder sensor network is used in the presented method to detect static and dynamic obstacles. The sensor network can guide each ground mobile robot in the detected safe area to the target. Furthermore, the presented navigation algorithm is extended into 3D environments. With the measurements of the sensor network, any flying robot in the workspace is navigated by the presented algorithm from the initial position to the target. Moreover, in this report, another navigation problem, safe area search and map building for ground mobile robot, is studied and two algorithms are presented. In the first presented method, we consider a ground mobile robot equipped with a 2D range finder sensor searching a bounded 2D area without any collision and building a complete 2D map of the area. Furthermore, the first presented map building algorithm is extended to another algorithm for 3D map building
    corecore