634 research outputs found

    Diagnosis and Repair for Synthesis from Signal Temporal Logic Specifications

    Full text link
    We address the problem of diagnosing and repairing specifications for hybrid systems formalized in signal temporal logic (STL). Our focus is on the setting of automatic synthesis of controllers in a model predictive control (MPC) framework. We build on recent approaches that reduce the controller synthesis problem to solving one or more mixed integer linear programs (MILPs), where infeasibility of a MILP usually indicates unrealizability of the controller synthesis problem. Given an infeasible STL synthesis problem, we present algorithms that provide feedback on the reasons for unrealizability, and suggestions for making it realizable. Our algorithms are sound and complete, i.e., they provide a correct diagnosis, and always terminate with a non-trivial specification that is feasible using the chosen synthesis method, when such a solution exists. We demonstrate the effectiveness of our approach on the synthesis of controllers for various cyber-physical systems, including an autonomous driving application and an aircraft electric power system

    Dynamics-Based Reactive Synthesis and Automated Revisions for High-Level Robot Control

    Full text link
    The aim of this work is to address issues where formal specifications cannot be realized on a given dynamical system subjected to a changing environment. Such failures occur whenever the dynamics of the system restrict the robot in such a way that the environment may prevent the robot from progressing safely to its goals. We provide a framework that automatically synthesizes revisions to such specifications that restrict the assumed behaviors of the environment and the behaviors of the system. We provide a means for explaining such modifications to the user in a concise, easy-to-understand manner. Integral to the framework is a new algorithm for synthesizing controllers for reactive specifications that include a discrete representation of the robot's dynamics. The new approach is demonstrated with a complex task implemented using a unicycle model.Comment: 25 pages, 8 figure

    First steps toward formal controller synthesis for bipedal robots with experimental implementation

    Get PDF
    Bipedal robots are prime examples of complex cyber–physical systems (CPSs). They exhibit many of the features that make the design and verification of CPS so difficult: hybrid dynamics, large continuous dynamics in each mode (e.g., 10 or more state variables), and nontrivial specifications involving nonlinear constraints on the state variables. In this paper, we propose a two-step approach to formally synthesize controllers for bipedal robots so as to enforce specifications by design and thereby generate physically realizable stable walking. In the first step, we design outputs and classical controllers driving these outputs to zero. The resulting controlled system evolves on a lower dimensional manifold and is described by the hybrid zero dynamics governing the remaining degrees of freedom. In the second step, we construct an abstraction of the hybrid zero dynamics that is used to synthesize a controller enforcing the desired specifications to be satisfied on the full order model. Our two step approach is a systematic way to mitigate the curse of dimensionality that hampers the applicability of formal synthesis techniques to complex CPS. Our results are illustrated with simulations showing how the synthesized controller enforces all the desired specifications and offers improved performance with respect to a classical controller. The practical relevance of the results is illustrated experimentally on the bipedal robot AMBER 3
    • …
    corecore