546 research outputs found

    Stereo-vision-based navigation of a six-legged walking robot in unknown rough terrain

    Get PDF
    In this paper we presents a visual navigation algorithm for the six-legged walking robot DLR Crawler in rough terrain. The algorithm is based on stereo images from which depth images are computed using the semi- global matching (SGM) method. Further, a visual odometry is calculated along with an error measure. Pose estimates are obtained by fusing iner- tial data with relative leg odometry and visual odometry measurements using an indirect information filter. The visual odometry error measure is used in the filtering process to put lower weights on erroneous visual odometry data, hence, improving the robustness of pose estimation. From the estimated poses and the depth images, a dense digital terrain map is created by applying the locus method. The traversability of the terrain is estimated by a plane fitting approach and paths are planned using a D* Lite planner taking the traversability of the terrain and the current motion capabilities of the robot into account. Motion commands and the traversability measures of the upcoming terrain are sent to the walking layer of the robot so that it can choose an appropriate gait for the terrain. Experimental results show the accuracy of the navigation algorithm and its robustness against visual disturbances

    Implementation of Collaborative RF Localization Using a Software-Defined Radio Network

    Get PDF
    This thesis investigates the use of collaboration between sensor nodes that were tasked with localizing a radio frequency emitter. Localization is a necessary component for dynamic spectrum access. Using a set of software-defined radios as our sensors and a received signal strength-based maximum likelihood localization algorithm, we successfully localized transmitting nodes based on their received signal strength. Our experiment was conducted outdoors using a flexible topology that could be shaped into 21 sub-topologies that varied in size, and orientation with respect to the transmitters. This was made possible through application of a time shift concept and a post-processing technique. We were able to compare our real world results with the simulated results of the same topologies. Although our simulation results did not fully comply with our real world results, we observed some common trends regarding effective topology design

    AIDS drugs for Africa!' a case study examining transnational AIDS treatment activism and the reduction of global antiretroviral prices from 1996 to 2001

    Get PDF
    Includes abstract. Includes bibliographical references

    An intelligent navigation system for an unmanned surface vehicle

    Get PDF
    Merged with duplicate record 10026.1/2768 on 27.03.2017 by CS (TIS)A multi-disciplinary research project has been carried out at the University of Plymouth to design and develop an Unmanned Surface Vehicle (USV) named ýpringer. The work presented herein relates to formulation of a robust, reliable, accurate and adaptable navigation system to enable opringei to undertake various environmental monitoring tasks. Synergistically, sensor mathematical modelling, fuzzy logic, Multi-Sensor Data Fusion (MSDF), Multi-Model Adaptive Estimation (MMAE), fault adaptive data acquisition and an user interface system are combined to enhance the robustness and fault tolerance of the onboard navigation system. This thesis not only provides a holistic framework but also a concourse of computational techniques in the design of a fault tolerant navigation system. One of the principle novelties of this research is the use of various fuzzy logic based MSDF algorithms to provide an adaptive heading angle under various fault situations for Springer. This algorithm adapts the process noise covariance matrix ( Q) and measurement noise covariance matrix (R) in order to address one of the disadvantages of Kalman filtering. This algorithm has been implemented in Spi-inger in real time and results demonstrate excellent robustness qualities. In addition to the fuzzy logic based MSDF, a unique MMAE algorithm has been proposed in order to provide an alternative approach to enhance the fault tolerance of the heading angles for Springer. To the author's knowledge, the work presented in this thesis suggests a novel way forward in the development of autonomous navigation system design and, therefore, it is considered that the work constitutes a contribution to knowledge in this area of study. Also, there are a number of ways in which the work presented in this thesis can be extended to many other challenging domains.DEVONPORT MANAGEMENT LTD, J&S MARINE LTD AND SOUTH WEST WATER PL

    Multisource Data Integration in Remote Sensing

    Get PDF
    Papers presented at the workshop on Multisource Data Integration in Remote Sensing are compiled. The full text of these papers is included. New instruments and new sensors are discussed that can provide us with a large variety of new views of the real world. This huge amount of data has to be combined and integrated in a (computer-) model of this world. Multiple sources may give complimentary views of the world - consistent observations from different (and independent) data sources support each other and increase their credibility, while contradictions may be caused by noise, errors during processing, or misinterpretations, and can be identified as such. As a consequence, integration results are very reliable and represent a valid source of information for any geographical information system

    Robust Multi-sensor Data Fusion for Practical Unmanned Surface Vehicles (USVs) Navigation

    Get PDF
    The development of practical Unmanned Surface Vehicles (USVs) are attracting increasing attention driven by their assorted military and commercial application potential. However, addressing the uncertainties presented in practical navigational sensor measurements of an USV in maritime environment remain the main challenge of the development. This research aims to develop a multi-sensor data fusion system to autonomously provide an USV reliable navigational information on its own positions and headings as well as to detect dynamic target ships in the surrounding environment in a holistic fashion. A multi-sensor data fusion algorithm based on Unscented Kalman Filter (UKF) has been developed to generate more accurate estimations of USV’s navigational data considering practical environmental disturbances. A novel covariance matching adaptive estimation algorithm has been proposed to deal with the issues caused by unknown and varying sensor noise in practice to improve system robustness. Certain measures have been designed to determine the system reliability numerically, to recover USV trajectory during short term sensor signal loss, and to autonomously detect and discard permanently malfunctioned sensors, and thereby enabling potential sensor faults tolerance. The performance of the algorithms have been assessed by carrying out theoretical simulations as well as using experimental data collected from a real-world USV projected collaborated with Plymouth University. To increase the degree of autonomy of USVs in perceiving surrounding environments, target detection and prediction algorithms using an Automatic Identification System (AIS) in conjunction with a marine radar have been proposed to provide full detections of multiple dynamic targets in a wider coverage range, remedying the narrow detection range and sensor uncertainties of the AIS. The detection algorithms have been validated in simulations using practical environments with water current effects. The performance of developed multi-senor data fusion system in providing reliable navigational data and perceiving surrounding environment for USV navigation have been comprehensively demonstrated

    Nonlinear and distributed sensory estimation

    Get PDF
    Methods to improve performance of sensors with regard to sensor nonlinearity, sensor noise and sensor bandwidths are investigated and new algorithms are developed. The necessity of the proposed research has evolved from the ever-increasing need for greater precision and improved reliability in sensor measurements. After describing the current state of the art of sensor related issues like nonlinearity and bandwidth, research goals are set to create a new trend on the usage of sensors. We begin the investigation with a detailed distortion analysis of nonlinear sensors. A need for efficient distortion compensation procedures is further justified by showing how a slight deviation from the linearity assumption leads to a very severe distortion in time and in frequency domains. It is argued that with a suitable distortion compensation technique the danger of having an infinite bandwidth nonlinear sensory operation, which is dictated by nonlinear distortion, can be avoided. Several distortion compensation techniques are developed and their performance is validated by simulation and experimental results. Like any other model-based technique, modeling errors or model uncertainty affects performance of the proposed scheme, this leads to the innovation of robust signal reconstruction. A treatment for this problem is given and a novel technique, which uses a nominal model instead of an accurate model and produces the results that are robust to model uncertainty, is developed. The means to attain a high operating bandwidth are developed by utilizing several low bandwidth pass-band sensors. It is pointed out that instead of using a single sensor to measure a high bandwidth signal, there are many advantages of using an array of several pass-band sensors. Having shown that employment of sensor arrays is an economic incentive and practical, several multi-sensor fusion schemes are developed to facilitate their implementation. Another aspect of this dissertation is to develop means to deal with outliers in sensor measurements. As fault sensor data detection is an essential element of multi-sensor network implementation, which is used to improve system reliability and robustness, several sensor scheduling configurations are derived to identify and to remove outliers

    UAV Path Planning and Multi-Modal Localization for Mapping in a Subterranean Environment

    Get PDF
    The use of Unmanned Aerial Vehicles (UAVs), especially quadcopters, have become popular in academia and industry due to their small size and maneuverability. These UAVs can be programmed to autonomously execute missions that are usually difficult and risky for humans, such as subterranean exploration, infrastructure surveying, and even disaster response. However, inaccessible and remote environments pose a challenge in terms of navigation as they often lack access to Global Navigation Satellite System (GNSS) connections and lack features. To address these challenges, UAVs are equipped with multiple sensors to acquire different types of data. These include range, acceleration, and even images, which are fused to estimate a localization solution. The Autonomous Robotic Early Warning System for Underground Stone Mining Safety project, sponsored by Alpha Foundation, is conducted within the Statler College at West Virginia University (WVU). The project aims to map walls and pillars within a mine to analyze its structural integrity and safety. This thesis investigates the implementation of a path planning strategy to optimize the coverage of a wall and also the use of an error state Extended Kalman Filter (EKF) for sensor fusion to perform Simultaneous Localization and Mapping (SLAM). The experiments were carried out both in simulated and real world environments. In these experiments, the UAV was equipped with an Inertial Measurement Unit (IMU), laser altimeter, Ultra-Wideband (UWB) module (for ranging data), LiDAR for mapping, and an RGB-D camera to provide a Visual Odometry (VO) solution. In the simulation, the 3D reconstruction and odometry was compared to the ground truth, whereas the real experiment provided further insight into the strategy’s feasibility

    Review of air fuel ratio prediction and control methods

    Get PDF
    Air pollution is one of main challenging issues nowadays that researchers have been trying to address.The emissions of vehicle engine exhausts are responsible for 50 percent of air pollution. Different types of emissions emit from vehicles including carbon monoxide, hydrocarbons, NOX, and so on. There is a tendency to develop strategies of engine control which work in a fast way. Accomplishing this task will result in a decrease in emissions which coupled with the fuel composition can bring about the best performance of the vehicle engine.Controlling the Air-Fuel Ratio (AFR) is necessary, because the AFR has an enormous impact on the effectiveness of the fuel and reduction of emissions.This paper is aimed at reviewing the recent studies on the prediction and control of the AFR, as a bulk of research works with different approaches, was conducted in this area.These approaches include both classical and modern methods, namely Artificial Neural Networks (ANN), Fuzzy Logic, and Neuro-Fuzzy Systems are described in this paper.The strength and the weakness of individual approaches will be discussed at length

    World Modeling for Intelligent Autonomous Systems

    Get PDF
    The functioning of intelligent autonomous systems requires constant situation awareness and cognition analysis. Thus, it needs a memory structure that contains a description of the surrounding environment (world model) and serves as a central information hub. This book presents a row of theoretical and experimental results in the field of world modeling. This includes areas of dynamic and prior knowledge modeling, information fusion, management and qualitative/quantitative information analysis
    • …
    corecore