1,649 research outputs found

    Local Government Policy and Planning for Unmanned Aerial Systems

    Get PDF
    This research identifies key state and local government stakeholders in California for drone policy creation and implementation, and describes their perceptions and understanding of drone policy. The investigation assessed stakeholders’ positions, interests, and influence on issues, with the goal of providing potential policy input to achieve successful drone integration in urban environments and within the national airspace of the United States. The research examined regulatory priorities through the use of a two-tiered Stakeholder Analysis Process. The first tier consisted of a detailed survey sent out to over 450 local agencies and jurisdictions in California. The second tier consisted of an in-person focus group to discuss survey results as well as to gain deeper insights into local policymakers’ current concerns. Results from the two tiers of analysis, as well as recommendations, are provided here

    U.S. Unmanned Aerial Vehicles (UAVS) and Network Centric Warfare (NCW) impacts on combat aviation tactics from Gulf War I through 2007 Iraq

    Get PDF
    Unmanned, aerial vehicles (UAVs) are an increasingly important element of many modern militaries. Their success on battlefields in Afghanistan, Iraq, and around the globe has driven demand for a variety of types of unmanned vehicles. Their proven value consists in low risk and low cost, and their capabilities include persistent surveillance, tactical and combat reconnaissance, resilience, and dynamic re-tasking. This research evaluates past, current, and possible future operating environments for several UAV platforms to survey the changing dynamics of combat-aviation tactics and make recommendations regarding UAV employment scenarios to the Turkish military. While UAVs have already established their importance in military operations, ongoing evaluations of UAV operating environments, capabilities, technologies, concepts, and organizational issues inform the development of future systems. To what extent will UAV capabilities increasingly define tomorrow's missions, requirements, and results in surveillance and combat tactics? Integrating UAVs and concepts of operations (CONOPS) on future battlefields is an emergent science. Managing a transition from manned- to unmanned and remotely piloted aviation platforms involves new technological complexity and new aviation personnel roles, especially for combat pilots. Managing a UAV military transformation involves cultural change, which can be measured in decades.http://archive.org/details/usunmannedaerial109454211Turkish Air Force authors.Approved for public release; distribution is unlimited

    Current Safety Nets Within the U.S. National Airspace System

    Get PDF
    There are over 70,000 flights managed per day in the National Airspace System, with approximately 7,000 aircraft in the air over the United States at any given time. Operators of each of these flights would prefer to fly a user-defined 4D trajectory (4DT), which includes arrival and departure times; preferred gates and runways at the airport; efficient, wind-optimal routes for departure, cruise and arrival phase of flight; and fuel efficient altitude profiles. To demonstrate the magnitude of this achievement a single flight from Los Angeles to Baltimore, accesses over 35 shared or constrained resources that are managed by roughly 30 air traffic controllers (at towers, approach control and en route sectors); along with traffic managers at 12 facilities, using over 22 different, independent automation system (including TBFM, ERAM, STARS, ASDE-X, FSM, TSD, GPWS, TCAS, etc.). In addition, dispatchers, ramp controllers and others utilize even more systems to manage each flights access to operator-managed resources. Flying an ideal 4DT requires successful coordination of all flight constraints among all flights, facilities, operators, pilots and controllers. Additionally, when conditions in the NAS change, the trajectories of one or more aircraft may need to be revised to avoid loss of flight efficiency, predictability, separation or system throughput. The Aviation Safety Network has released the 2016 airliner accident statistics showing a very low total of 19 fatal airliner accidents, resulting in 325 fatalities1. Despite several high profile accidents, the year 2016 turned out to be a very safe year for commercial aviation, Aviation Safety Network data show. Over the year 2016 the Aviation Safety Network recorded a total of 19 fatal airliner accidents [1], resulting in 325 fatalities. This makes 2016 the second safest year ever, both by number of fatal accidents as well as in terms of fatalities. In 2015 ASN recorded 16 accidents while in 2013 a total of 265 lives were lost. How can we keep it that way and not upset the apple cart by premature insertion of innovative technologies, functions, and procedures? In aviation, safety nets function as the last system defense against incidents and accidents. Current ground-based and airborne safety nets are well established and development to make them more efficient and reliable continues. Additionally, future air traffic control safety nets may emerge from new operational concepts

    Technology challenges of stealth unmanned combat aerial vehicles

    Get PDF
    The ever-changing battlefield environment, as well as the emergence of global command and control architectures currently used by armed forces around the globe, requires the use of robust and adaptive technologies integrated into a reliable platform. Unmanned Combat Aerial Vehicles (UCAVs) aim to integrate such advanced technologies while also increasing the tactical capabilities of combat aircraft. This paper provides a summary of the technical and operational design challenges specific to UCAVs, focusing on high-performance, and stealth designs. After a brief historical overview, the main technology demonstrator programmes currently under development are presented. The key technologies affecting UCAV design are identified and discussed. Finally, this paper briefly presents the main issues related to airworthiness, navigation, and ethical concerns behind UAV/UCAV operations

    Development of Cursor-on-Target Control for Semi-Autonomous Unmanned Aircraft Systems

    Get PDF
    The research presented in this thesis focuses on developing, demonstrating, and evaluating the concept of a Cursor-on-Target control system for semi-autonomous unmanned aircraft systems. The Department of Defense has mapped out a strategy in which unmanned aircraft systems will increasingly replace piloted aircraft. During most phases of flight autonomous unmanned aircraft control reduces operator workload, however, real-time information exchange often requires an operator to relay decision changes to the unmanned aircraft. The goal of this research is to develop a preliminary Cursor-on-Target control system to enable the operator to guide the unmanned aircraft with minimal workload during high task phases of flight and then evaluate the operator\u27s ability to conduct the mission using that control system. For this research, the problem of Cursor-on-Target control design has multiple components. Initially, a Cursor-on-Target controller is developed in Simulink. Then, this controller is integrated into the Aviator Visual Design Simulator to develop an operator-in-the-loop test platform. Finally, a ground target is simulated and tracked to validate the Cursor-on-Target controller. The Cursor-on-Target control system is then evaluated using a proposed operator rating scale
    • …
    corecore