1,171 research outputs found

    Navigating Through Virtual Worlds: From Single Characters to Large Crowds

    Get PDF
    With the rise and success of digital games over the past few decades, path planning algorithms have become an important aspect in modern game development for all types of genres. Indirectly-controlled playable characters as well as non-player characters have to find their way through the game's environment to reach their goal destinations. Modern gaming hardware and new algorithms enable the simulation of large crowds with thousands of individual characters. Still, the task of generating feasible and believable paths in a time- and storage-efficient way is a big challenge in this emerging and exciting research field. In this chapter, the authors describe classical algorithms and data structures, as well as recent approaches that enable the simulation of new and immersive features related to path planning and crowd simulation in modern games. The authors discuss the pros and cons of such algorithms, give an overview of current research questions and show why graph-based methods will soon be replaced by novel approaches that work on a surface-based representation of the environment

    Safetyā€oriented discrete event model for airport Aā€SMGCS reliability assessment

    Get PDF
    A detailed analysis of State of the Art Technologies and Procedures into Airport Advanced-Surface Movement Guidance and Control Systems has been provided in this thesis, together with the review ofStatistical Monte Carlo Analysis, Reliability Assessment and Petri Nets theories. This practical and theoretical background has lead the author to the conclusion that there is a lack of linkage in between these fields. At the same of time the rapid increasing of Air Traffic all over the world, has brought in evidence the urgent need of practical instruments able to identify and quantify the risks connected with Aircraft operations on the ground, since the Airport has shown to be the actual ā€˜bottle neckā€™ of the entire Air Transport System. Therefore, the only winning approach to such a critical matter has to be multi-disciplinary, sewing together apparently different subjects, coming from the most disparate areas of interest and trying to fulfil the gap. The result of this thesis work has come to a start towards the end, when a Timed Coloured Petri Net (TCPN) model of a ā€˜sampleā€™ Airport A-SMGCS has been developed, that is capable of taking into account different orders of questions arisen during these recent years and tries to give them some good answers. The A-SMGCS Airport model is, in the end, a parametric tool relying on Discrete Event System theory, able to perform a Reliability Analysis of the system itself, that: ā€¢ uses a Monte Carlo Analysis applied to a Timed Coloured Petri Net, whose purpose is to evaluate the Safety Level of Surface Movements along an Airport ā€¢ lets the user to analyse the impact of Procedures and Reliability Indexes of Systems such as Surface Movement Radars, Automatic Dependent Surveillance-Broadcast, Airport Lighting Systems, Microwave Sensors, and so onā€¦ onto the Safety Level of Airport Aircraft Transport System ā€¢ not only is a valid instrument in the Design Phase, but it is useful also into the Certifying Activities an in monitoring the Safety Level of the above mentioned System with respect to changes to Technologies and different Procedures.This TCPN model has been verified against qualitative engineering expectations by using simulation experiments and occupancy time schedules generated a priori. Simulation times are good, and since the model has been written into Simulink/Stateflow programming language, it can be compiled to run real-time in C language (Real-time workshop and Stateflow Coder), thus relying on portable code, able to run virtually on any platform, giving even better performances in terms of execution time. One of the most interesting applications of this work is the estimate, for an Airport, of the kind of A-SMGCS level of implementation needed (Technical/Economical convenience evaluation). As a matter of fact, starting from the Traffic Volume and choosing the kind of Ground Equipment to be installed, one can make predictions about the Safety Level of the System: if the value is compliant with the TLS required by ICAO, the A-SMGCS level of Implementation is sufficiently adequate. Nevertheless, even if the Level of Safety has been satisfied, some delays due to reduced or simplified performances (even if Safety is compliant) of some of the equipment (e.g. with reference to False Alarm Rates) can lead to previously unexpected economical consequences, thus requiring more accurate systems to be installed, in order to meet also Airport economical constraints. Work in progress includes the analysis of the effect of weather conditions and re-sequencing of a given schedule. The effect of re-sequencing a given schedule is not yet enough realistic since the model does not apply inter arrival and departure separations. However, the model might show some effect on different sequences based on runway occupancy times. A further developed model containing wake turbulence separation conditions would be more sensitive for this case. Hence, further work will be directed towards: ā€¢ The development of On-Line Re-Scheduling based on the available actual runway/taxiway configuration and weather conditions. ā€¢ The Engineering Safety Assessment of some small Italian Airport A-SMGCSs (Model validation with real data). ā€¢ The application of Stochastic Differential Equations systems in order to evaluate the collision risk on the ground inside the Place alone on the Petri Net, in the event of a Short Term Conflict Alert (STCA), by adopting Reich Collision Risk Model. ā€¢ Optimal Air Traffic Control Algorithms Synthesis (Adaptive look-ahead Optimization), by Dynamically Timed Coloured Petri Nets, together with the implementation of Error-Recovery Strategies and Diagnosis Functions

    Path planning and collision avoidance for autonomous surface vehicles I: a review

    Get PDF
    Autonomous surface vehicles are gaining increasing attention worldwide due to the potential benefits of improving safety and efficiency. This has raised the interest in developing methods for path planning that can reduce the risk of collisions, groundings, and stranding accidents at sea, as well as costs and time expenditure. In this paper, we review guidance, and more specifically, path planning algorithms of autonomous surface vehicles and their classification. In particular, we highlight vessel autonomy, regulatory framework, guidance, navigation and control components, advances in the industry, and previous reviews in the field. In addition, we analyse the terminology used in the literature and attempt to clarify ambiguities in commonly used terms related to path planning. Finally, we summarise and discuss our findings and highlight the potential need for new regulations for autonomous surface vehicles

    Optimisation-based verification process of obstacle avoidance systems for unmanned vehicles

    Get PDF
    This thesis deals with safety verification analysis of collision avoidance systems for unmanned vehicles. The safety of the vehicle is dependent on collision avoidance algorithms and associated control laws, and it must be proven that the collision avoidance algorithms and controllers are functioning correctly in all nominal conditions, various failure conditions and in the presence of possible variations in the vehicle and operational environment. The current widely used exhaustive search based approaches are not suitable for safety analysis of autonomous vehicles due to the large number of possible variations and the complexity of algorithms and the systems. To address this topic, a new optimisation-based verification method is developed to verify the safety of collision avoidance systems. The proposed verification method formulates the worst case analysis problem arising the verification of collision avoidance systems into an optimisation problem and employs optimisation algorithms to automatically search the worst cases. Minimum distance to the obstacle during the collision avoidance manoeuvre is defined as the objective function of the optimisation problem, and realistic simulation consisting of the detailed vehicle dynamics, the operational environment, the collision avoidance algorithm and low level control laws is embedded in the optimisation process. This enables the verification process to take into account the parameters variations in the vehicle, the change of the environment, the uncertainties in sensors, and in particular the mismatching between model used for developing the collision avoidance algorithms and the real vehicle. It is shown that the resultant simulation based optimisation problem is non-convex and there might be many local optima. To illustrate and investigate the proposed optimisation based verification process, the potential field method and decision making collision avoidance method are chosen as an obstacle avoidance candidate technique for verification study. Five benchmark case studies are investigated in this thesis: static obstacle avoidance system of a simple unicycle robot, moving obstacle avoidance system for a Pioneer 3DX robot, and a 6 Degrees of Freedom fixed wing Unmanned Aerial Vehicle with static and moving collision avoidance algorithms. It is proven that although a local optimisation method for nonlinear optimisation is quite efficient, it is not able to find the most dangerous situation. Results in this thesis show that, among all the global optimisation methods that have been investigated, the DIviding RECTangle method provides most promising performance for verification of collision avoidance functions in terms of guaranteed capability in searching worst scenarios

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    Path planning for unmanned aerial vehicles using visibility line-based methods

    Get PDF
    This thesis concerns the development of path planning algorithms for unmanned aerial vehicles (UAVs) to avoid obstacles in two- (2D) and three-dimensional (3D) urban environments based on the visibility graph (VG) method. As VG uses all nodes (vertices) in the environments, it is computationally expensive. The proposed 2D path planning algorithms, on the contrary, select a relatively smaller number of vertices using the so-called base line (BL), thus they are computationally efficient. The computational efficiency of the proposed algorithms is further improved by limiting the BLā€™s length, which results in an even smaller number of vertices. Simulation results have proven that the proposed 2D path planning algorithms are much faster in comparison with the VG and hence are suitable for real time path planning applications. While vertices can be explicitly defined in 2D environments using VG, it is difficult to determine them in 3D as they are infinite in number at each obstacleā€™s border edge. This issue is tackled by using the so-called plane rotation approach in the proposed 3D path planning algorithms where the vertices are the intersection points between a plane rotated by certain angles and obstacles edges. In order to ensure that the 3D path planning algorithms are computationally efficient, the proposed 2D path planning algorithms are applied into them. In addition, a software package using Matlab for 2D and 3D path planning has also been developed. The package is designed to be easy to use as well as user-friendly with step-by-step instructions
    • ā€¦
    corecore