264 research outputs found

    Ami-deu : un cadre sémantique pour des applications adaptables dans des environnements intelligents

    Get PDF
    Cette thèse vise à étendre l’utilisation de l'Internet des objets (IdO) en facilitant le développement d’applications par des personnes non experts en développement logiciel. La thèse propose une nouvelle approche pour augmenter la sémantique des applications d’IdO et l’implication des experts du domaine dans le développement d’applications sensibles au contexte. Notre approche permet de gérer le contexte changeant de l’environnement et de générer des applications qui s’exécutent dans plusieurs environnements intelligents pour fournir des actions requises dans divers contextes. Notre approche est mise en œuvre dans un cadriciel (AmI-DEU) qui inclut les composants pour le développement d’applications IdO. AmI-DEU intègre les services d’environnement, favorise l’interaction de l’utilisateur et fournit les moyens de représenter le domaine d’application, le profil de l’utilisateur et les intentions de l’utilisateur. Le cadriciel permet la définition d’applications IoT avec une intention d’activité autodécrite qui contient les connaissances requises pour réaliser l’activité. Ensuite, le cadriciel génère Intention as a Context (IaaC), qui comprend une intention d’activité autodécrite avec des connaissances colligées à évaluer pour une meilleure adaptation dans des environnements intelligents. La sémantique de l’AmI-DEU est basée sur celle du ContextAA (Context-Aware Agents) – une plateforme pour fournir une connaissance du contexte dans plusieurs environnements. Le cadriciel effectue une compilation des connaissances par des règles et l'appariement sémantique pour produire des applications IdO autonomes capables de s’exécuter en ContextAA. AmI- DEU inclut également un outil de développement visuel pour le développement et le déploiement rapide d'applications sur ContextAA. L'interface graphique d’AmI-DEU adopte la métaphore du flux avec des aides visuelles pour simplifier le développement d'applications en permettant des définitions de règles étape par étape. Dans le cadre de l’expérimentation, AmI-DEU comprend un banc d’essai pour le développement d’applications IdO. Les résultats expérimentaux montrent une optimisation sémantique potentielle des ressources pour les applications IoT dynamiques dans les maisons intelligentes et les villes intelligentes. Notre approche favorise l'adoption de la technologie pour améliorer le bienêtre et la qualité de vie des personnes. Cette thèse se termine par des orientations de recherche que le cadriciel AmI-DEU dévoile pour réaliser des environnements intelligents omniprésents fournissant des adaptations appropriées pour soutenir les intentions des personnes.Abstract: This thesis aims at expanding the use of the Internet of Things (IoT) by facilitating the development of applications by people who are not experts in software development. The thesis proposes a new approach to augment IoT applications’ semantics and domain expert involvement in context-aware application development. Our approach enables us to manage the changing environment context and generate applications that run in multiple smart environments to provide required actions in diverse settings. Our approach is implemented in a framework (AmI-DEU) that includes the components for IoT application development. AmI- DEU integrates environment services, promotes end-user interaction, and provides the means to represent the application domain, end-user profile, and end-user intentions. The framework enables the definition of IoT applications with a self-described activity intention that contains the required knowledge to achieve the activity. Then, the framework generates Intention as a Context (IaaC), which includes a self-described activity intention with compiled knowledge to be assessed for augmented adaptations in smart environments. AmI-DEU framework semantics adopts ContextAA (Context-Aware Agents) – a platform to provide context-awareness in multiple environments. The framework performs a knowledge compilation by rules and semantic matching to produce autonomic IoT applications to run in ContextAA. AmI-DEU also includes a visual tool for quick application development and deployment to ContextAA. The AmI-DEU GUI adopts the flow metaphor with visual aids to simplify developing applications by allowing step-by-step rule definitions. As part of the experimentation, AmI-DEU includes a testbed for IoT application development. Experimental results show a potential semantic optimization for dynamic IoT applications in smart homes and smart cities. Our approach promotes technology adoption to improve people’s well-being and quality of life. This thesis concludes with research directions that the AmI-DEU framework uncovers to achieve pervasive smart environments providing suitable adaptations to support people’s intentions

    An Analysis on Students’ Difficulties in Speaking

    Get PDF
    The purpose of this research was to analyze the students’ difficulties in speaking English especially in introducing them self at MTS NW Al Hidayah Baremayung. Besides, the researcher also wanted know what the students’ difficulties in speaking English and what the factors of students difficulties in speaking English especially in introducing them self. The method of collecting data are observation, recording, and interview. The data were taken from the subject of the research in the form of teaching learning process, interview and recording. The research finding show that the students difficulties in speaking English especially in introducing them self are: (a) the student’s low vocabulary mastery. (b) the students had difficulties in pronouncing certain words because, English words are different between pronunciation and writing. (c) the students were still confused in arranging words. Then, there were still some mistakes in their grammar. (d) the students were often afraid of speaking English because they were worried of making mistakes. They were not confident and nervous when they introducing themselves

    eFRIEND: an ethical framework for intelligent environments development

    Get PDF
    Intelligent environments aim to provide context-sensitive services to humans in the physical spaces in which they work and live. While the ethical dimensions of these systems have been considered, this is an aspect which requires further analysis. A literature review shows that these approaches are disconnected from each other, and that they are making little impact on real systems being built. This article provides a solution to both of these problems. It synthesises the ethical issues addressed by previous work and highlights other important concerns which have been overlooked so far. Furthermore, it proposes an alternative, more holistic approach that can be used to guide the development of intelligent environments. The validity of the framework is demonstrated by its integration into an actual project

    HABITAT: An IoT solution for independent elderly

    Get PDF
    In this work, a flexible and extensive digital platform for Smart Homes is presented, exploiting the most advanced technologies of the Internet of Things, such as Radio Frequency Identification, wearable electronics, Wireless Sensor Networks, and Artificial Intelligence. Thus, the main novelty of the paper is the system-level description of the platform flexibility allowing the interoperability of different smart devices. This research was developed within the framework of the operative project HABITAT (Home Assistance Based on the Internet of Things for the Autonomy of Everybody), aiming at developing smart devices to support elderly people both in their own houses and in retirement homes, and embedding them in everyday life objects, thus reducing the expenses for healthcare due to the lower need for personal assistance, and providing a better life quality to the elderly users.In this work, a flexible and extensive digital platform for Smart Homes is presented, exploiting the most advanced technologies of the Internet of Things, such as Radio Frequency Identification, wearable electronics, Wireless Sensor Networks, and Artificial Intelligence. Thus, the main novelty of the paper is the system-level description of the platform flexibility allowing the interoperability of different smart devices. This research was developed within the framework of the operative project HABITAT (Home Assistance Based on the Internet of Things for the Autonomy of Everybody), aiming at developing smart devices to support elderly people both in their own houses and in retirement homes, and embedding them in everyday life objects, thus reducing the expenses for healthcare due to the lower need for personal assistance, and providing a better life quality to the elderly users

    Context-Aware and Adaptable eLearning Systems

    Get PDF
    The full text file attached to this record contains a copy of the thesis without the authors publications attached. The list of publications that are attached to the complete thesis can be found on pages 6-7 in the thesis.This thesis proposed solutions to some shortcomings to current eLearning architectures. The proposed DeLC architecture supports context-aware and adaptable provision of eLearning services and electronic content. The architecture is fully distributed and integrates service-oriented development with agent technology. Central to this architecture is that a node is our unit of computation (known as eLearning node) which can have purely service-oriented architecture, agent-oriented architecture or mixed architecture. Three eLeaerning Nodes have been implemented in order to demonstrate the vitality of the DeLC concept. The Mobile eLearning Node uses a three-level communication network, called InfoStations network, supporting mobile service provision. The services, displayed on this node, are to be aware of its context, gather required learning material and adapted to the learner request. This is supported trough a multi-layered hybrid (service- and agent-oriented) architecture whose kernel is implemented as middleware. For testing of the middleware a simulation environment has been developed. In addition, the DeLC development approach is proposed. The second eLearning node has been implemented as Education Portal. The architecture of this node is poorly service-oriented and it adopts a client-server architecture. In the education portal, there are incorporated education services and system services, called engines. The electronic content is kept in Digital Libraries. Furthermore, in order to facilitate content creators in DeLC, the environment Selbo2 was developed. The environment allows for creating new content, editing available content, as well as generating educational units out of preexisting standardized elements. In the last two years, the portal is used in actual education at the Faculty of Mathematics and Informatics, University of Plovdiv. The third eLearning node, known as Agent Village, exhibits a purely agent-oriented architecture. The purpose of this node is to provide intelligent assistance to the services deployed on the Education Pportal. Currently, two kinds of assistants are implemented in the node - eTesting Assistants and Refactoring eLearning Environment (ReLE). A more complex architecture, known as Education Cluster, is presented in this thesis as well. The Education Cluster incorporates two eLearning nodes, namely the Education Portal and the Agent Village. eLearning services and intelligent agents interact in the cluster
    • …
    corecore