25,152 research outputs found

    An Improved Approximate Consensus Algorithm in the Presence of Mobile Faults

    Full text link
    This paper explores the problem of reaching approximate consensus in synchronous point-to-point networks, where each pair of nodes is able to communicate with each other directly and reliably. We consider the mobile Byzantine fault model proposed by Garay '94 -- in the model, an omniscient adversary can corrupt up to ff nodes in each round, and at the beginning of each round, faults may "move" in the system (i.e., different sets of nodes may become faulty in different rounds). Recent work by Bonomi et al. '16 proposed a simple iterative approximate consensus algorithm which requires at least 4f+14f+1 nodes. This paper proposes a novel technique of using "confession" (a mechanism to allow others to ignore past behavior) and a variant of reliable broadcast to improve the fault-tolerance level. In particular, we present an approximate consensus algorithm that requires only ⌈7f/2⌉+1\lceil 7f/2\rceil + 1 nodes, an ⌊f/2⌋\lfloor f/2 \rfloor improvement over the state-of-the-art algorithms. Moreover, we also show that the proposed algorithm is optimal within a family of round-based algorithms

    Asynchronous Convex Consensus in the Presence of Crash Faults

    Full text link
    This paper defines a new consensus problem, convex consensus. Similar to vector consensus [13, 20, 19], the input at each process is a d-dimensional vector of reals (or, equivalently, a point in the d-dimensional Euclidean space). However, for convex consensus, the output at each process is a convex polytope contained within the convex hull of the inputs at the fault-free processes. We explore the convex consensus problem under crash faults with incorrect inputs, and present an asynchronous approximate convex consensus algorithm with optimal fault tolerance that reaches consensus on an optimal output polytope. Convex consensus can be used to solve other related problems. For instance, a solution for convex consensus trivially yields a solution for vector consensus. More importantly, convex consensus can potentially be used to solve other more interesting problems, such as convex function optimization [5, 4].Comment: A version of this work is published in PODC 201

    Approximate Consensus in Highly Dynamic Networks: The Role of Averaging Algorithms

    Full text link
    In this paper, we investigate the approximate consensus problem in highly dynamic networks in which topology may change continually and unpredictably. We prove that in both synchronous and partially synchronous systems, approximate consensus is solvable if and only if the communication graph in each round has a rooted spanning tree, i.e., there is a coordinator at each time. The striking point in this result is that the coordinator is not required to be unique and can change arbitrarily from round to round. Interestingly, the class of averaging algorithms, which are memoryless and require no process identifiers, entirely captures the solvability issue of approximate consensus in that the problem is solvable if and only if it can be solved using any averaging algorithm. Concerning the time complexity of averaging algorithms, we show that approximate consensus can be achieved with precision of Δ\varepsilon in a coordinated network model in O(nn+1log⁥1Δ)O(n^{n+1} \log\frac{1}{\varepsilon}) synchronous rounds, and in O(ΔnnΔ+1log⁥1Δ)O(\Delta n^{n\Delta+1} \log\frac{1}{\varepsilon}) rounds when the maximum round delay for a message to be delivered is Δ\Delta. While in general, an upper bound on the time complexity of averaging algorithms has to be exponential, we investigate various network models in which this exponential bound in the number of nodes reduces to a polynomial bound. We apply our results to networked systems with a fixed topology and classical benign fault models, and deduce both known and new results for approximate consensus in these systems. In particular, we show that for solving approximate consensus, a complete network can tolerate up to 2n-3 arbitrarily located link faults at every round, in contrast with the impossibility result established by Santoro and Widmayer (STACS '89) showing that exact consensus is not solvable with n-1 link faults per round originating from the same node

    Byzantine Approximate Agreement on Graphs

    Get PDF
    Consider a distributed system with n processors out of which f can be Byzantine faulty. In the approximate agreement task, each processor i receives an input value x_i and has to decide on an output value y_i such that 1) the output values are in the convex hull of the non-faulty processors\u27 input values, 2) the output values are within distance d of each other. Classically, the values are assumed to be from an m-dimensional Euclidean space, where m >= 1. In this work, we study the task in a discrete setting, where input values with some structure expressible as a graph. Namely, the input values are vertices of a finite graph G and the goal is to output vertices that are within distance d of each other in G, but still remain in the graph-induced convex hull of the input values. For d=0, the task reduces to consensus and cannot be solved with a deterministic algorithm in an asynchronous system even with a single crash fault. For any d >= 1, we show that the task is solvable in asynchronous systems when G is chordal and n > (omega+1)f, where omega is the clique number of G. In addition, we give the first Byzantine-tolerant algorithm for a variant of lattice agreement. For synchronous systems, we show tight resilience bounds for the exact variants of these and related tasks over a large class of combinatorial structures

    Reaching Approximate Byzantine Consensus in Partially-Connected Mobile Networks

    Get PDF
    We consider the problem of approximate consensus in mobile networks containing Byzantine nodes. We assume that each correct node can communicate only with its neighbors and has no knowledge of the global topology. As all nodes have moving ability, the topology is dynamic. The number of Byzantine nodes is bounded by f and known by all correct nodes. We first introduce an approximate Byzantine consensus protocol which is based on the linear iteration method. As nodes are allowed to collect information during several consecutive rounds, moving gives them the opportunity to gather more values. We propose a novel sufficient and necessary condition to guarantee the final convergence of the consensus protocol. The requirement expressed by our condition is not "universal": in each phase it affects only a single correct node. More precisely, at least one correct node among those that propose either the minimum or the maximum value which is present in the network, has to receive enough messages (quantity constraint) with either higher or lower values (quality constraint). Of course, nodes' motion should not prevent this requirement to be fulfilled. Our conclusion shows that the proposed condition can be satisfied if the total number of nodes is greater than 3f+1.Comment: No. RR-7985 (2012
    • 

    corecore