1,839 research outputs found

    Tropical Fourier-Motzkin elimination, with an application to real-time verification

    Get PDF
    We introduce a generalization of tropical polyhedra able to express both strict and non-strict inequalities. Such inequalities are handled by means of a semiring of germs (encoding infinitesimal perturbations). We develop a tropical analogue of Fourier-Motzkin elimination from which we derive geometrical properties of these polyhedra. In particular, we show that they coincide with the tropically convex union of (non-necessarily closed) cells that are convex both classically and tropically. We also prove that the redundant inequalities produced when performing successive elimination steps can be dynamically deleted by reduction to mean payoff game problems. As a complement, we provide a coarser (polynomial time) deletion procedure which is enough to arrive at a simply exponential bound for the total execution time. These algorithms are illustrated by an application to real-time systems (reachability analysis of timed automata).Comment: 29 pages, 8 figure

    Linearized analysis versus optimization-based nonlinear analysis for nonlinear systems

    Get PDF
    For autonomous nonlinear systems stability and input-output properties in small enough (infinitesimally small) neighborhoods of (linearly) asymptotically stable equilibrium points can be inferred from the properties of the linearized dynamics. On the other hand, generalizations of the S-procedure and sum-of-squares programming promise a framework potentially capable of generating certificates valid over quantifiable, finite size neighborhoods of the equilibrium points. However, this procedure involves multiple relaxations (unidirectional implications). Therefore, it is not obvious if the sum-of-squares programming based nonlinear analysis can return a feasible answer whenever linearization based analysis does. Here, we prove that, for a restricted but practically useful class of systems, conditions in sum-of-squares programming based region-of-attraction, reachability, and input-output gain analyses are feasible whenever linearization based analysis is conclusive. Besides the theoretical interest, such results may lead to computationally less demanding, potentially more conservative nonlinear (compared to direct use of sum-of-squares formulations) analysis tools
    • 

    corecore