657 research outputs found

    A first cubic upper bound on the local reachability index for some positive 2-D systems

    Full text link
    [EN] The calculation of the smallest number of steps needed to deterministically reach all local states of an nth-order positive 2-D system, which is called local reachability index (ILR) of that system, was recently tackled bymeans of the use of a suitable composition table. The greatest index ILR obtained in the previous literature was n+3 ([n/2]) 2 for some appropriated values of n. Taking as a basis both a combinatorial approach of such systems and the construction of suitable geometric sets in the plane, an upper bound on ILR depending on the dimension n for a new family of systems is characterized. The 2-D influence digraph of this family of order n = 6 consists of two subdigraphs corresponding to a unique source s. The first one is a cycle involving the first n(1) vertices and is connected to the another subdigraph through the 1-arc (2, n(1) +n(2)), being the natural numbers n(1) and n(2) such that n(1) > n(2) = 2 and n-n(1)-n(2) = 1. The second one has two main cycles, a cycle where only the remaining vertices n(1)+1,..., n appear and a cycle containing only the vertices n(1)+1, n(1)+n(2)-1. Moreover, the last vertices are connected through the 2-arc (n(1) +n(2)-1, n). Furthermore, if n > 12 and is a multiple of 3, for appropriate n(1) and n(2), the ILR of that family is at least cubic, exactly, it must be n(3)+9n(2)+45n+108/27, which shows that some local states can be deterministically reached much further than initially proposed in the literature.We are gratefully thankful to the reviewers for their valuable remarks. This work has been partially supported by the European Union [FEDER funds] and Ministerio de Ciencia e Innovacion through Grants MTM-2013-43678-P and DPI2016-78831-C2-1-R.Bailo Ballarín, E.; Gelonch, J.; Romero Vivó, S. (2019). A first cubic upper bound on the local reachability index for some positive 2-D systems. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 113(4):3767-3784. https://doi.org/10.1007/s13398-019-00699-0S376737841134Bailo, E., Gelonch, J., Romero-Vivo, S.: An upper bound on the reachability index for a special class of positive 2-D systems. Electron. J. Linear Algebra 18, 1–12 (2009)Bailo, E., Gelonch, J., Romero-Vivo, S.: Advances on the reachability index of positive 2-D systems. IEEE Trans. Autom. Control 59(8), 2248–2251 (2014)Bartosiewicz, Z.: Reachability and observability graphs for linear positive systems on time scales. IFAC Proc. Vol. 47(3), 3803–3808 (2014)Benvenuti, L., De Santis, A., Farina, L. (eds.): Positive Systems: Theory and Applications. Lecture Notes in Control and Information Sciences, vol. 294. Springer, Berlin (2003)Benvenuti, L.: On the reachable set for third-order linear discrete-time systems with positive control. Syst. Control Lett. 60(9), 690–698 (2011)Benvenuti, L.: On the reachable set for third-order linear discrete-time systems with positive control: the case of complex eigenvalues. Syst. Control Lett. 60(9), 1000–1008 (2011)Benzaouia, A., Hmamed, A., Tadeo, F.: Two-dimensional systems: from introduction to state of the art. In: Studies in Systems, Decision and Control (Vol. 28). Springer, Switzerland, (2016). https://doi.org/10.1007/978-3-319-20116-0Bru, R., Romero-Vivo, S. (eds.): Positive Systems: Theory and Applications. Lecture Notes in Control and Information Sciences, vol. 389. Springer, Berlin (2009)Bru, R., Bailo, E., Gelonch, J., Romero, S.: On the reachability index of positive 2-d systems. IEEE Trans. Circ. Syst. II: Express Brief 53(10), 997–1001 (2006)Bru, R., Coll, C., Romero, S., Sánchez, E.: Reachability indices of positive linear systems. Electron. J. Linear Algebra 11, 88–102 (2004)Bru, R., Romero-Vivó, S., Sánchez, E.: Reachability indices of periodic positive systems via positive shift-similarity. Linear Algebra Appl. 429, 1288–1301 (2008)Bru, R., Cacceta, L., Rumchev, V.G.: Monomial subdigraphs of reachable and controllable positive discrete-time systems. Int. J. Appl. Math. Comput. Sci. 15(1), 159–166 (2005)Bru, R., Romero, S., Sánchez, E.: Canonical forms of reachability and controllability of positive discrete-time control systems. Linear Algebra Appl. 310, 49–71 (2000)Cacace, F., Farina, L., Setola, R., Germani, A. (eds.): Positive Systems: Theory and Applications. Lecture Notes in Control and Information Sciences, vol. 471. Springer, Berlin (2017)Cantó, B., Coll, C., Sánchez, E.: On stability and reachability of perturbed positive systems. Adv. Differ. Equ. 2014(1), 296 (2014). https://doi.org/10.1186/1687-1847-2014-296Coll, C., Fullana, M., Sánchez, E.: Reachability and observability indices of a discrete-time periodic descriptor system. Appl. Math. Comput. 153, 485–496 (2004)Commault, C.: A simple graph theoretic characterization of reachability for positive linear systems. Syst. Control Lett. 52(3–4), 275–282 (2004)Commault, C.: On the reachability in any fixed time for positive continuous-time linear systems. Syst. Control Lett. 56(4), 272–276 (2007)Commault, C., Marchand, N. (eds.): Positive Systems: Theory and Applications. Lecture Notes in Control and Information Sciences, vol. 341. Springer, Berlin (2006)Coxson, P.G., Shapiro, H.: Positive reachability and controllability of positive systems. Linear Algebra Appl. 94, 35–53 (1987)Coxson, P.G., Larson, L.C., Schneider, H.: Monomial patterns in the sequence Akb{A}^kb. Linear Algebra Appl. 94, 89–101 (1987)De la Sen, M.: On the reachability and controllability of positive linear time-invariant dynamic systems with internal and external incommensurate point delays. Rocky Mt J Math 40(1), 177–207 (2010)Fanti, M.P., Maione, B., Turchiano, B.: Controllability of linear single-input positive discrete time systems. Int J Control 50, 2523–2542 (1989)Fanti, M.P., Maione, B., Turchiano, B.: Controllability of multi-input positive discrete time systems. Int J Control 51, 1295–1308 (1990)Farina, L., Rinaldi, S.: Positive Linear Systems: Theory and Applications. Pure and Applied Mathematics. Wiley, New York (2000)Fornasini, E., Marchesini, G.: State-Space realization of two-dimensional filters. IEEE Trans. Autom. Control AC–21(4), 484–491 (1976)Fornasini, E., Marchesini, G.: Doubly indexed dynamical systems. Math. Syst. Theory 12, 59–72 (1978)Fornasini, E., Valcher, M.E.: On the positive reachability of 2D positive systems. In: Farina, L., Benvenuti, L., De Santis, A. (eds.) Positive Systems. Lecture Notes in Control and Information Sciences, pp. 297–304. Springer, Berlin (2003)Fornasini, E., Valcher, M.E.: Controllability and reachability of 2-d positive systems: a graph theoretic approach. IEEE Trans. Circuits Syst. I Regul. Pap. 52(3), 576–585 (2005)Hrynlów, K., Markowski, K.A.: Experimental evaluation of upper bounds of reachability index for set of solutions of 2-D positive system. In: 17th International Carpathian Control Conference (ICCC), Tatranska Lomnica, pp. 248–252 (2016). https://doi.org/10.1109/CarpathianCC.2016.7501103Kaczorek, T.: Reachability and controllability of 2D positive linear systems with state feedback. Control Cybern. 29(1), 141–151 (2000)Kaczorek, T.: Positive 1D and 2D Systems. Springer, London (2002)Kaczorek, T.: Reachability and minimum energy control of positive 2D systems with delays. Control Cybern 34(2), 411–423 (2005)Kaczorek, T.: New reachability and observability tests for positive linear discrete-time systems. Bull. Polish Acad. Sci. Tech. Sci. 55(1), 19–21 (2007)Kaczorek, T.: Reachability of linear hybrid systems described by the general model. J. Arch. Control Sci. 20(2), 199–207 (2010)Kaczorek, T., Borawski, K.: Existence of reachable pairs (A, B) of discrete-time linear systems. In: Proceedings of 21st International Conference on Methods and Models in Automation and Robotics (MMAR). IEEE, pp. 702–707 (2016). https://doi.org/10.1109/MMAR.2016.7575222Kostova, S.P.: A PLDS model of pollution in connected water reservoirs. In: Benvenuti, L., De Santis, A., Farina, L. (eds.) Positive Systems. Lecture Notes in Control and Information Science, vol. 294, pp. 257–263. Springer, Berlin (2003)Marszalek, W.: Two-dimensional state space discrete models for hyperbolic partial differential equations. Appl. Math. Model. 8(1), 11–14 (1984)Markowski, K.A.: Determination reachability index space of positive two-dimensional linear system using digraph-based theory. In: 19th International Conference on System Theory, Control and Computing (ICSTCC), Cheile Gradistei, pp. 533–538 (2015). https://doi.org/10.1109/ICSTCC.2015.7321348Moysis, L., Mishra, V.: Existence of reachable and observable triples of linear discrete-time descriptor systems. Circ. Syst. Signal Process. 3, 1–13 (2018). https://doi.org/10.1007/s00034-018-0922-5Pereira, R., Rocha, P., Simões, R.: Characterizations of global reachability of 2D structured systems. Multidimens. Syst. Signal Process. 24, 1–14 (2011). https://doi.org/10.1007/s11045-011-0154-3Rumchev, V.G., James, D.J.G.: Reachability and controllability of time-variant discrete-time positive linear systems. Control Cybern. 33(1), 87–93 (2004)Rumchev, V., Chotijah, S.: The minimum energy problem for positive discrete-time linear systems with fixed final state. In: Bru, R., Romero-Vivo, S. (eds.) Positive Systems. Lecture notes in control and information sciences, vol. 389, pp. 141–149. Springer, Berlin (2009)Valcher, M.E.: Controllability and reachability criteria for discrete time positive systems. Int. J. Control 65(3), 511–536 (1996)Valcher, M.E.: Reachability properties of continuous-time positive systems. IEEE Trans. Autom. Control 54(7), 1586–1590 (2009)Valcher, M.E.: Reachability analysis for different classes of positive systems. In: Bru, R., Romero-Vivo, S. (eds.) Positive Systems. Lecture notes in control and information sciences, vol. 389, pp. 29–41. Springer, Berlin (2009

    Positivity of Continuous-Time Descriptor Systems With Time Delays

    Get PDF
    This technical note is concerned with positivity characteristic of continuous-time descriptor systems with time delays. First, a set of necessary and sufficient conditions is presented to check the property. Then, considering a descriptor time-delay system with two assumptions, a new time-delay system is established whose positivity is equivalent to that of the original system. Furthermore, a set of necessary and sufficient conditions is provided to check the positivity of the new system. Finally, a numerical example is given to illustrate the validity of the results obtained

    Linear Lyapunov Cone-Systems

    Get PDF

    Positive Filtering with l

    Get PDF
    This paper is concerned with the positive filtering problem for discrete-time positive systems under the l1-induced performance. We aim to propose a pair of positive filters with error-bounding features to estimate the output of positive systems. A novel characterization is first constructed so that the filtering error system is asymptotically stable with a prescribed l1-induced performance. Then, necessary and sufficient conditions for the existence of required filters are presented, and the obtained results are expressed as linear programming problems. Moreover, it is pointed out that the results can be easily checked by standard software. In addition, a numerical example is given to show the effectiveness of the proposed design procedures

    Data informativity for analysis of linear systems with convex conic constraints

    Get PDF
    This letter studies the informativity problem for reachability and null-controllability of constrained systems. To be precise, we will focus on an unknown linear systems with convex conic constraints from which we measure data consisting of exact state trajectories of finite length. We are interested in performing system analysis of such an unknown system on the basis of the measured data. However, from such measurements it is only possi- ble to obtain a unique system explaining the data in very restrictive cases. This means that we can not approach this problem using system identification combined with model based analysis. As such, we will formulate condi- tions on the data under which any such system consistent with the measurements is guaranteed to be reachable or null-controllable. These conditions are stated in terms of spectral conditions and subspace inclusions, and therefore they are easy to verify
    • …
    corecore