3,300 research outputs found

    Answering Regular Path Queries on Workflow Provenance

    Full text link
    This paper proposes a novel approach for efficiently evaluating regular path queries over provenance graphs of workflows that may include recursion. The approach assumes that an execution g of a workflow G is labeled with query-agnostic reachability labels using an existing technique. At query time, given g, G and a regular path query R, the approach decomposes R into a set of subqueries R1, ..., Rk that are safe for G. For each safe subquery Ri, G is rewritten so that, using the reachability labels of nodes in g, whether or not there is a path which matches Ri between two nodes can be decided in constant time. The results of each safe subquery are then composed, possibly with some small unsafe remainder, to produce an answer to R. The approach results in an algorithm that significantly reduces the number of subqueries k over existing techniques by increasing their size and complexity, and that evaluates each subquery in time bounded by its input and output size. Experimental results demonstrate the benefit of this approach

    High-Performance Reachability Query Processing under Index Size Restrictions

    Full text link
    In this paper, we propose a scalable and highly efficient index structure for the reachability problem over graphs. We build on the well-known node interval labeling scheme where the set of vertices reachable from a particular node is compactly encoded as a collection of node identifier ranges. We impose an explicit bound on the size of the index and flexibly assign approximate reachability ranges to nodes of the graph such that the number of index probes to answer a query is minimized. The resulting tunable index structure generates a better range labeling if the space budget is increased, thus providing a direct control over the trade off between index size and the query processing performance. By using a fast recursive querying method in conjunction with our index structure, we show that in practice, reachability queries can be answered in the order of microseconds on an off-the-shelf computer - even for the case of massive-scale real world graphs. Our claims are supported by an extensive set of experimental results using a multitude of benchmark and real-world web-scale graph datasets.Comment: 30 page

    PReaCH: A Fast Lightweight Reachability Index using Pruning and Contraction Hierarchies

    Full text link
    We develop the data structure PReaCH (for Pruned Reachability Contraction Hierarchies) which supports reachability queries in a directed graph, i.e., it supports queries that ask whether two nodes in the graph are connected by a directed path. PReaCH adapts the contraction hierarchy speedup techniques for shortest path queries to the reachability setting. The resulting approach is surprisingly simple and guarantees linear space and near linear preprocessing time. Orthogonally to that, we improve existing pruning techniques for the search by gathering more information from a single DFS-traversal of the graph. PReaCH-indices significantly outperform previous data structures with comparable preprocessing cost. Methods with faster queries need significantly more preprocessing time in particular for the most difficult instances

    The Reach-Avoid Problem for Constant-Rate Multi-Mode Systems

    Full text link
    A constant-rate multi-mode system is a hybrid system that can switch freely among a finite set of modes, and whose dynamics is specified by a finite number of real-valued variables with mode-dependent constant rates. Alur, Wojtczak, and Trivedi have shown that reachability problems for constant-rate multi-mode systems for open and convex safety sets can be solved in polynomial time. In this paper, we study the reachability problem for non-convex state spaces and show that this problem is in general undecidable. We recover decidability by making certain assumptions about the safety set. We present a new algorithm to solve this problem and compare its performance with the popular sampling based algorithm rapidly-exploring random tree (RRT) as implemented in the Open Motion Planning Library (OMPL).Comment: 26 page

    Towards Efficient Verification of Population Protocols

    Full text link
    Population protocols are a well established model of computation by anonymous, identical finite state agents. A protocol is well-specified if from every initial configuration, all fair executions reach a common consensus. The central verification question for population protocols is the well-specification problem: deciding if a given protocol is well-specified. Esparza et al. have recently shown that this problem is decidable, but with very high complexity: it is at least as hard as the Petri net reachability problem, which is EXPSPACE-hard, and for which only algorithms of non-primitive recursive complexity are currently known. In this paper we introduce the class WS3 of well-specified strongly-silent protocols and we prove that it is suitable for automatic verification. More precisely, we show that WS3 has the same computational power as general well-specified protocols, and captures standard protocols from the literature. Moreover, we show that the membership problem for WS3 reduces to solving boolean combinations of linear constraints over N. This allowed us to develop the first software able to automatically prove well-specification for all of the infinitely many possible inputs.Comment: 29 pages, 1 figur

    Distributed Synthesis in Continuous Time

    Get PDF
    We introduce a formalism modelling communication of distributed agents strictly in continuous-time. Within this framework, we study the problem of synthesising local strategies for individual agents such that a specified set of goal states is reached, or reached with at least a given probability. The flow of time is modelled explicitly based on continuous-time randomness, with two natural implications: First, the non-determinism stemming from interleaving disappears. Second, when we restrict to a subclass of non-urgent models, the quantitative value problem for two players can be solved in EXPTIME. Indeed, the explicit continuous time enables players to communicate their states by delaying synchronisation (which is unrestricted for non-urgent models). In general, the problems are undecidable already for two players in the quantitative case and three players in the qualitative case. The qualitative undecidability is shown by a reduction to decentralized POMDPs for which we provide the strongest (and rather surprising) undecidability result so far
    • …
    corecore