1,725 research outputs found

    Parameterized Verification of Algorithms for Oblivious Robots on a Ring

    Full text link
    We study verification problems for autonomous swarms of mobile robots that self-organize and cooperate to solve global objectives. In particular, we focus in this paper on the model proposed by Suzuki and Yamashita of anonymous robots evolving in a discrete space with a finite number of locations (here, a ring). A large number of algorithms have been proposed working for rings whose size is not a priori fixed and can be hence considered as a parameter. Handmade correctness proofs of these algorithms have been shown to be error-prone, and recent attention had been given to the application of formal methods to automatically prove those. Our work is the first to study the verification problem of such algorithms in the parameter-ized case. We show that safety and reachability problems are undecidable for robots evolving asynchronously. On the positive side, we show that safety properties are decidable in the synchronous case, as well as in the asynchronous case for a particular class of algorithms. Several properties on the protocol can be decided as well. Decision procedures rely on an encoding in Presburger arithmetics formulae that can be verified by an SMT-solver. Feasibility of our approach is demonstrated by the encoding of several case studies

    Verification and Synthesis of Symmetric Uni-Rings for Leads-To Properties

    Full text link
    This paper investigates the verification and synthesis of parameterized protocols that satisfy leadsto properties R⇝QR \leadsto Q on symmetric unidirectional rings (a.k.a. uni-rings) of deterministic and constant-space processes under no fairness and interleaving semantics, where RR and QQ are global state predicates. First, we show that verifying R⇝QR \leadsto Q for parameterized protocols on symmetric uni-rings is undecidable, even for deterministic and constant-space processes, and conjunctive state predicates. Then, we show that surprisingly synthesizing symmetric uni-ring protocols that satisfy R⇝QR \leadsto Q is actually decidable. We identify necessary and sufficient conditions for the decidability of synthesis based on which we devise a sound and complete polynomial-time algorithm that takes the predicates RR and QQ, and automatically generates a parameterized protocol that satisfies R⇝QR \leadsto Q for unbounded (but finite) ring sizes. Moreover, we present some decidability results for cases where leadsto is required from multiple distinct RR predicates to different QQ predicates. To demonstrate the practicality of our synthesis method, we synthesize some parameterized protocols, including agreement and parity protocols

    Mechanizing a Process Algebra for Network Protocols

    Get PDF
    This paper presents the mechanization of a process algebra for Mobile Ad hoc Networks and Wireless Mesh Networks, and the development of a compositional framework for proving invariant properties. Mechanizing the core process algebra in Isabelle/HOL is relatively standard, but its layered structure necessitates special treatment. The control states of reactive processes, such as nodes in a network, are modelled by terms of the process algebra. We propose a technique based on these terms to streamline proofs of inductive invariance. This is not sufficient, however, to state and prove invariants that relate states across multiple processes (entire networks). To this end, we propose a novel compositional technique for lifting global invariants stated at the level of individual nodes to networks of nodes.Comment: This paper is an extended version of arXiv:1407.3519. The Isabelle/HOL source files, and a full proof document, are available in the Archive of Formal Proofs, at http://afp.sourceforge.net/entries/AWN.shtm
    • …
    corecore