353 research outputs found

    TopCom: Index for Shortest Distance Query in Directed Graph

    Get PDF
    Finding shortest distance between two vertices in a graph is an important problem due to its numerous applications in diverse domains, including geo-spatial databases, social network analysis, and information retrieval. Classical algorithms (such as, Dijkstra) solve this problem in polynomial time, but these algorithms cannot provide real-time response for a large number of bursty queries on a large graph. So, indexing based solutions that pre-process the graph for efficiently answering (exactly or approximately) a large number of distance queries in real-time is becoming increasingly popular. Existing solutions have varying performance in terms of index size, index building time, query time, and accuracy. In this work, we propose T OP C OM , a novel indexing-based solution for exactly answering distance queries. Our experiments with two of the existing state-of-the-art methods (IS-Label and TreeMap) show the superiority of T OP C OM over these two methods considering scalability and query time. Besides, indexing of T OP C OM exploits the DAG (directed acyclic graph) structure in the graph, which makes it significantly faster than the existing methods if the SCCs (strongly connected component) of the input graph are relatively small

    Optimizing scoring functions and indexes for proximity search in type-annotated corpora

    Get PDF
    We introduce a new, powerful class of text proximity queries: find an instance of a given "answer type" (person, place, distance) near "selector" tokens matching given literals or satisfying given ground predicates. An example query is type=distance NEAR Hamburg Munich. Nearness is defined as a flexible, trainable parameterized aggregation function of the selectors, their frequency in the corpus, and their distance from the candidate answer. Such queries provide a key data reduction step for information extraction, data integration, question answering, and other text-processing applications. We describe the architecture of a next-generation information retrieval engine for such applications, and investigate two key technical problems faced in building it. First, we propose a new algorithm that estimates a scoring function from past logs of queries and answer spans. Plugging the scoring function into the query processor gives high accuracy: typically, an answer is found at rank 2-4. Second, we exploit the skew in the distribution over types seen in query logs to optimize the space required by the new index structures required by our system. Extensive performance studies with a 10GB, 2-million document TREC corpus and several hundred TREC queries show both the accuracy and the efficiency of our system. From an initial 4.3GB index using 18,000 types from WordNet, we can discard 88% of the space, while inflating query times by a factor of only 1.9. Our final index overhead is only 20% of the total index space needed

    An early look at the LDBC Social Network Benchmark's Business Intelligence workload

    Get PDF
    In this short paper, we provide an early look at the LDBC Social Network Benchmark's Business Intelligence (BI) workload which tests graph data management systems on a graph business analytics workload. Its queries involve complex aggregations and navigations (joins) that touch large data volumes, which is typical in BI workloads, yet they depend heavily on graph functionality such as connectivity tests and path finding. We outline the motivation for this new benchmark, which we derived from many interactions with the graph database industry and its users, and situate it in a scenario of social network analysis. The workload was designed by taking into account technical ``chokepoints'' identified by database system architects from academia and industry, which we also describe and map to the queries. We present reference implementations in openCypher, PGQL, SPARQL, and SQL, and preliminary results of SNB BI on a number of graph data management systems

    Understanding, Estimating, and Incorporating Output Quality Into Join Algorithms For Information Extraction

    Get PDF
    Information extraction (IE) systems are trained to extract specific relations from text databases. Real-world applications often require that the output of multiple IE systems be joined to produce the data of interest. To optimize the execution of a join of multiple extracted relations, it is not sufficient to consider only execution time. In fact, the quality of the join output is of critical importance: unlike in the relational world, different join execution plans can produce join results of widely different quality whenever IE systems are involved. In this paper, we develop a principled approach to understand, estimate, and incorporate output quality into the join optimization process over extracted relations. We argue that the output quality is affected by (a) the configuration of the IE systems used to process the documents, (b) the document retrieval strategies used to retrieve documents, and (c) the actual join algorithm used. Our analysis considers a variety of join algorithms from relational query optimization, and predicts the output quality –and, of course, the execution time– of the alternate execution plans. We establish the accuracy of our analytical models, as well as study the effectiveness of a quality-aware join optimizer, with a large-scale experimental evaluation over real-world text collections and state-of-the-art IE systems

    Indexing collections of XML documents with arbitrary links

    Get PDF
    In recent years, the popularity of XML has increased significantly. XML is the extensible markup language of the World Wide Web Consortium (W3C). XML is used to represent data in many areas, such as traditional database management systems, e-business environments, and the World Wide Web. XML data, unlike relational and object-oriented data, has no fixed schema known in advance and is stored separately from the data. XML data is self-describing and can model heterogeneity more naturally than relational or object-oriented data models. Moreover, XML data usually has XLinks or XPointers to data in other documents (e.g., global-links). In addition to XLink or XPointer links, the XML standard allows to add internal-links between different elements in the same XML document using the ID/IDREF attributes. The rise in popularity of XML has generated much interest in query processing over graph-structured data. In order to facilitate efficient evaluation of path expressions, structured indexes have been proposed. However, most variants of structured indexes ignore global- or interior-document references. They assume a tree-like structure of XML-documents, which do not contain such global-and internal-links. Extending these indexes to work with large XML graphs considering of global- or internal-document links, firstly requires a lot of computing power for the creation process. Secondly, this would also require a great deal of space in which to store the indexes. As a latter demonstrates, the efficient evaluation of ancestors-descendants queries over arbitrary graphs with long paths is indeed a complex issue. This thesis proposes the HID index (2-Hop cover path Index based on DAG) is based on the concept of a two-hop cover for a directed graph. The algorithms proposed for the HID index creation, in effect, scales down the original graph size substantially. As a result, a directed acyclic graph (DAG) with a smaller number of nodes and edges will emerge. This reduces the number of computing steps required for building the index. In addition to this, computing time and space will be reduced as well. The index also permits to efficiently evaluate ancestors-descendants relationships. Moreover, the proposed index has an advantage over other comparable indexes: it is optimized for descendants- or-self queries on arbitrary graphs with link relationship, a task that would stress any index structures. Our experiments with real life XML data show that, the HID index provides better performance than other indexes

    DYNAMIC HYPERTEXT SYNTHESIS FOR INFORMATION RETRIEVAL

    Get PDF
    Hypertext navigation alone is insufficient for efficient Information Retrieval (IR). Previous attempts to combine IR techniques with hypertext have been confined to the pre-authored structure of a document. In this paper we extend computer-science methods to synthesize a tailor-made hypertext document in response to each user's query. The synthesis technique can also be used to automatically create a pre-authored hypertext document according to an author's specifications.Information Systems Working Papers Serie
    • …
    corecore