16,932 research outputs found

    Developmentally regulated multisensory integration for prey localization in the medicinal leech

    Get PDF
    Medicinal leeches, like many aquatic animals, use water disturbances to localize their prey, so they need to be able to determine if a wave disturbance is created by prey or by another source. Many aquatic predators perform this separation by responding only to those wave frequencies representing their prey. As leeches' prey preference changes over the course of their development, we examined their responses at three different life stages. We found that juveniles more readily localize wave sources of lower frequencies (2 Hz) than their adult counterparts (8–12 Hz), and that adolescents exhibited elements of both juvenile and adult behavior, readily localizing sources of both frequencies. Leeches are known to be able to localize the source of waves through the use of either mechanical or visual information. We separately characterized their ability to localize various frequencies of stimuli using unimodal cues. Within a single modality, the frequency–response curves of adults and juveniles were virtually indistinguishable. However, the differences between the responses for each modality (visual and mechanosensory) were striking. The optimal visual stimulus had a much lower frequency (2 Hz) than the optimal mechanical stimulus (12 Hz). These frequencies matched, respectively, the juvenile and the adult preferred frequency for multimodally sensed waves. This suggests that, in the multimodal condition, adult behavior is driven more by mechanosensory information and juvenile behavior more by visual. Indeed, when stimuli of the two modalities were placed in conflict with one another, adult leeches, unlike juveniles, were attracted to the mechanical stimulus much more strongly than to the visual stimulus

    A Large-Scale Behavioral Screen to Identify Neurons Controlling Motor Programs in the Drosophila Brain

    Get PDF
    Drosophila is increasingly used for understanding the neural basis of behavior through genetically targeted manipulation of specific neurons. The primary approach in this regard has relied on the suppression of neuronal activity. Here, we report the results of a novel approach to find and characterize neural circuits by expressing neuronal activators to stimulate subsets of neurons to induce behavior. Classical electrophysiological studies demonstrated that stimulation of command neurons could activate neural circuits to trigger fixed action patterns. Our method was designed to find such command neurons for diverse behaviors by screening flies in which random subsets of brain cells were activated. We took advantage of the large collection of Gal4 lines from the NP project and crossed 835 Gal4 strains with relatively limited Gal4 expression in the brain to flies carrying a UAS transgene encoding TRPM8, a cold-sensitive ion channel. Low temperatures opened the TRPM8 channel in Gal4-expressing cells, leading to their excitation, and in many cases induced overt behavioral changes in adult flies. Paralysis was reproducibly observed in the progeny of crosses with 84 lines, whereas more specific behaviors were induced with 24 other lines. Stimulation performed using the heat-activated channel, TrpA1, resulted in clearer and more robust behaviors, including flight, feeding, and egg-laying. Through follow-up studies starting from this screen, we expect to find key components of the neural circuits underlying specific behaviors, thus providing a new avenue for their functional analysis.National Institute of Mental Health (U.S.) (Grant MH85958)Worcester Foundation for Biomedical ResearchJapan Society for the Promotion of Science (grant-in-aid)National Institute of Mental Health (U.S.) (Intramural Research Program

    Identification of a Command Neuron Directing the Expression of Feeding Behavior in \u3cem\u3eDrosophila melanogaster\u3c/em\u3e: A Dissertation

    Get PDF
    Feeding is one of the most important behaviors for an animal’s survival. At a gross level, it is known that the nervous system plays a major role in the expression of this complex behavior, yet a detailed understanding of the neural circuits directing feeding behavior remains unknown. Here we identify a command neuron in Drosophila melanogaster whose artificial activation, using dTrpA1, a heat-activated cation channel, induces the appearance of complete feeding behavior. We use behavioral, genetic, cellular and optical imaging techniques to show that the induced behavior is composed of multiple motor programs and can function to uptake exogenous, even noxious, material. Furthermore, we resolve the neuron’s location to the subesophageal ganglion, characterize its pre and post-synaptic sites, and determine its responsiveness to sucrose stimulation. Interestingly, the neuron’s dendritic field is proximal to sweet sensing axon terminals and its baseline activity corresponds to the fly’s satiation state, suggesting a potential point of integration between sensory, motor and motivational systems. The identification of a command neuron for feeding in a genetically tractable organism provides a useful model to develop a deeper understanding of the neural control of this ubiquitous and evolutionarily ancient behavior

    Materiality and human cognition

    Get PDF
    In this paper, we examine the role of materiality in human cognition. We address issues such as the ways in which brain functions may change in response to interactions with material forms, the attributes of material forms that may cause change in brain functions, and the spans of time required for brain functions to reorganize when interacting with material forms. We then contrast thinking through materiality with thinking about it. We discuss these in terms of their evolutionary significance and history as attested by stone tools and writing, material forms whose interaction endowed our lineage with conceptual thought and meta-awareness of conceptual domains

    Computation of Interaural Time Difference in the Owl's Coincidence Detector Neurons

    Get PDF
    Both the mammalian and avian auditory systems localize sound sources by computing the interaural time difference (ITD) with submillisecond accuracy. The neural circuits for this computation in birds consist of axonal delay lines and coincidence detector neurons. Here, we report the first in vivo intracellular recordings from coincidence detectors in the nucleus laminaris of barn owls. Binaural tonal stimuli induced sustained depolarizations (DC) and oscillating potentials whose waveforms reflected the stimulus. The amplitude of this sound analog potential (SAP) varied with ITD, whereas DC potentials did not. The amplitude of the SAP was correlated with firing rate in a linear fashion. Spike shape, synaptic noise, the amplitude of SAP, and responsiveness to current pulses differed between cells at different frequencies, suggesting an optimization strategy for sensing sound signals in neurons tuned to different frequencies

    Eye-movements in implicit artificial grammar learning

    Get PDF
    Artificial grammar learning (AGL) has been probed with forced-choice behavioral tests (active tests). Recent attempts to probe the outcomes of learning (implicitly acquired knowledge) with eye-movement responses (passive tests) have shown null results. However, these latter studies have not tested for sensitivity effects, for example, increased eye movements on a printed violation. In this study, we tested for sensitivity effects in AGL tests with (Experiment 1) and without (Experiment 2) concurrent active tests (preference- and grammaticality classification) in an eye-tracking experiment. Eye movements discriminated between sequence types in passive tests and more so in active tests. The eye-movement profile did not differ between preference and grammaticality classification, and it resembled sensitivity effects commonly observed in natural syntax processing. Our findings show that the outcomes of implicit structured sequence learning can be characterized in eye tracking. More specifically, whole trial measures (dwell time, number of fixations) showed robust AGL effects, whereas first-pass measures (first-fixation duration) did not. Furthermore, our findings strengthen the link between artificial and natural syntax processing, and they shed light on the factors that determine performance differences in preference and grammaticality classification tests.Max Planck Institute for PsycholinguisticsDonders Institute for Brain, Cognition and BehaviorVetenskapsradetSwedish Dyslexia Foundatio

    Do Pinnipeds Have Personality? Broad Dimensions and Contextual Consistency of Behavior in Harbor Seals (Phoca vitulina) and California Sea Lions (Zalophus californianus)

    Get PDF
    Personality has now been studied in species as diverse as chimpanzees and cuttlefish, but marine mammals remain vastly underrepresented in this area. A broad range of traits have been assessed only once in each of bottlenose dolphins and California sea lions, while consistent individual differences in a few specific behaviors have been identified in grey seals. Furthermore, the context component of definitions of personality is not often assessed, despite evidence that animals may show individual patterns of behavioral consistency across contexts. The current study therefore aimed to use behavioral coding to assess underlying personality factors and consistency across contexts in two marine mammal species: California sea lions and harbor seals. In both species, two personality factors were extracted using exploratory factor analysis. Both were broadly similar across species; the first, Boldness, resembled human Extraversion, and to some extent Openness, with sea lions exhibiting a greater social component. The second factor was labeled Routine Activity, and may contain some Conscientiousness-like traits. Species-specific patterns were also identified for interactive behaviors across two contexts. However, there was substantial individual variation in the frequency of these behaviors, as well as some animals who did not conform to group-level trends. This study therefore provides novel evidence for broad personality factors and both groupand individual-level patterns of contextual consistency in two pinniped species

    Non-linear stimulus-response behavior of the human stance control system is predicted by optimization of a system with sensory and motor noise

    Get PDF
    We developed a theory of human stance control that predicted (1) how subjects re-weight their utilization of proprioceptive and graviceptive orientation information in experiments where eyes closed stance was perturbed by surface-tilt stimuli with different amplitudes, (2) the experimentally observed increase in body sway variability (i.e. the “remnant” body sway that could not be attributed to the stimulus) with increasing surface-tilt amplitude, (3) neural controller feedback gains that determine the amount of corrective torque generated in relation to sensory cues signaling body orientation, and (4) the magnitude and structure of spontaneous body sway. Responses to surface-tilt perturbations with different amplitudes were interpreted using a feedback control model to determine control parameters and changes in these parameters with stimulus amplitude. Different combinations of internal sensory and/or motor noise sources were added to the model to identify the properties of noise sources that were able to account for the experimental remnant sway characteristics. Various behavioral criteria were investigated to determine if optimization of these criteria could predict the identified model parameters and amplitude-dependent parameter changes. Robust findings were that remnant sway characteristics were best predicted by models that included both sensory and motor noise, the graviceptive noise magnitude was about ten times larger than the proprioceptive noise, and noise sources with signal-dependent properties provided better explanations of remnant sway. Overall results indicate that humans dynamically weight sensory system contributions to stance control and tune their corrective responses to minimize the energetic effects of sensory noise and external stimuli
    • …
    corecore