312 research outputs found

    SyReC Synthesizer: An MQT tool for synthesis of reversible circuits

    Full text link
    Reversible circuits form the backbone for many promising emerging technologies such as quantum computing, low power/adiabatic design, encoder/decoder devices, and several other applications. In the recent years, the scalable synthesis of such circuits has gained significant attention. In this work, we present the SyReC Synthesizer, a synthesis tool for reversible circuits based on the hardware description language SyReC. SyReC allows to describe reversible functionality at a high level of abstraction. The provided SyReC Synthesizer then realizes this functionality in a push-button fashion. Corresponding options allow for a trade-off between the number of needed circuit signals/lines (relevant, e.g., for quantum computing in which every circuit line corresponds to a qubit) and the respectively needed gates (corresponding to the circuit's costs). Furthermore, the tool allows to simulate the resulting circuit as well as to determine the gate costs of it. The SyReC Synthesizer is available as an open-source software package at https://github.com/cda-tum/syrec as part of the Munich Quantum Toolkit (MQT).Comment: 6 pages, 3 figures, Software Impacts Journa

    HDL-based Synthesis of Reversible Circuits : A Scalable Design Approach

    Get PDF
    Reversible computing is a promising research field due to its applications in several emerging technologies. Accordingly, several approaches for the design of reversible circuits have been introduced. Hardware Description Languages approach scales better than other methodologies, however, its main drawback is substantial amounts of additional circuit lines. This dissertation is an important step towards an elaborated scalable design flow of reversible circuits. In which, HDL-based design of reversible circuit is optimised, with line-awareness considered as the main objective. A line-aware programming style for a dedicated reversible hardware description language SyReC is proposed. Another contribution is a line-aware computation of HDL expressions. Reversible circuits' synthesis from a conventional hardware description language (VHDL) is examined. Finally, syntactical extensions to the dedicated hardware description language SyReC are suggested

    Estimación estadística de consumo en FPGAs

    Full text link
    Tesis doctoral inédita. Universidad Autónoma de Madrid, Escuela Politécnica Superior, junio de 200

    DESIGN AUTOMATION FOR LOW POWER RFID TAGS

    Get PDF
    Radio Frequency Identification (RFID) tags are small, wireless devices capable of automated item identification, used in a variety of applications including supply chain management, asset management, automatic toll collection (EZ Pass), etc. However, the design of these types of custom systems using the traditional methods can take months for a hardware engineer to develop and debug. In this dissertation, an automated, low-power flow for the design of RFID tags has been developed, implemented and validated. This dissertation presents the RFID Compiler, which permits high-level design entry using a simple description of the desired primitives and their behavior in ANSI-C. The compiler has different back-ends capable of targeting microprocessor-based or custom hardware-based tags. For the hardware-based tag, the back-end automatically converts the user-supplied behavior in C to low power synthesizable VHDL optimized for RFID applications. The compiler also integrates a fast, high-level power macromodeling flow, which can be used to generate power estimates within 15% accuracy of industry CAD tools and to optimize the primitives and / or the behaviors, compared to conventional practices. Using the RFID Compiler, the user can develop the entire design in a matter of days or weeks. The compiler has been used to implement standards such as ANSI, ISO 18000-7, 18000-6C and 18185-7. The automatically generated tag designs were validated by targeting microprocessors such as the AD Chips EISC and FPGAs such as Xilinx Spartan 3. The corresponding ASIC implementation is comparable to the conventionally designed commercial tags in terms of the energy and area. Thus, the RFID Compiler permits the design of power efficient, custom RFID tags by a wider audience with a dramatically reduced design cycle

    New Data Structures and Algorithms for Logic Synthesis and Verification

    Get PDF
    The strong interaction between Electronic Design Automation (EDA) tools and Complementary Metal-Oxide Semiconductor (CMOS) technology contributed substantially to the advancement of modern digital electronics. The continuous downscaling of CMOS Field Effect Transistor (FET) dimensions enabled the semiconductor industry to fabricate digital systems with higher circuit density at reduced costs. To keep pace with technology, EDA tools are challenged to handle both digital designs with growing functionality and device models of increasing complexity. Nevertheless, whereas the downscaling of CMOS technology is requiring more complex physical design models, the logic abstraction of a transistor as a switch has not changed even with the introduction of 3D FinFET technology. As a consequence, modern EDA tools are fine tuned for CMOS technology and the underlying design methodologies are based on CMOS logic primitives, i.e., negative unate logic functions. While it is clear that CMOS logic primitives will be the ultimate building blocks for digital systems in the next ten years, no evidence is provided that CMOS logic primitives are also the optimal basis for EDA software. In EDA, the efficiency of methods and tools is measured by different metrics such as (i) the result quality, for example the performance of a digital circuit, (ii) the runtime and (iii) the memory footprint on the host computer. With the aim to optimize these metrics, the accordance to a specific logic model is no longer important. Indeed, the key to the success of an EDA technique is the expressive power of the logic primitives handling and solving the problem, which determines the capability to reach better metrics. In this thesis, we investigate new logic primitives for electronic design automation tools. We improve the efficiency of logic representation, manipulation and optimization tasks by taking advantage of majority and biconditional logic primitives. We develop synthesis tools exploiting the majority and biconditional expressiveness. Our tools show strong results as compared to state-of-the-art academic and commercial synthesis tools. Indeed, we produce the best results for several public benchmarks. On top of the enhanced synthesis power, our methods are the natural and native logic abstraction for circuit design in emerging nanotechnologies, where majority and biconditional logic are the primitive gates for physical implementation. We accelerate formal methods by (i) studying properties of logic circuits and (ii) developing new frameworks for logic reasoning engines. We prove non-trivial dualities for the property checking problem in logic circuits. Our findings enable sensible speed-ups in solving circuit satisfiability. We develop an alternative Boolean satisfiability framework based on majority functions. We prove that the general problem is still intractable but we show practical restrictions that can be solved efficiently. Finally, we focus on reversible logic where we propose a new equivalence checking approach. We exploit the invertibility of computation and the functionality of reversible gates in the formulation of the problem. This enables one order of magnitude speed up, as compared to the state-of-the-art solution. We argue that new approaches to solve EDA problems are necessary, as we have reached a point of technology where keeping pace with design goals is tougher than ever

    Efficient reconfigurable architectures for 3D medical image compression

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Recently, the more widespread use of three-dimensional (3-D) imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and ultrasound (US) have generated a massive amount of volumetric data. These have provided an impetus to the development of other applications, in particular telemedicine and teleradiology. In these fields, medical image compression is important since both efficient storage and transmission of data through high-bandwidth digital communication lines are of crucial importance. Despite their advantages, most 3-D medical imaging algorithms are computationally intensive with matrix transformation as the most fundamental operation involved in the transform-based methods. Therefore, there is a real need for high-performance systems, whilst keeping architectures exible to allow for quick upgradeability with real-time applications. Moreover, in order to obtain efficient solutions for large medical volumes data, an efficient implementation of these operations is of significant importance. Reconfigurable hardware, in the form of field programmable gate arrays (FPGAs) has been proposed as viable system building block in the construction of high-performance systems at an economical price. Consequently, FPGAs seem an ideal candidate to harness and exploit their inherent advantages such as massive parallelism capabilities, multimillion gate counts, and special low-power packages. The key achievements of the work presented in this thesis are summarised as follows. Two architectures for 3-D Haar wavelet transform (HWT) have been proposed based on transpose-based computation and partial reconfiguration suitable for 3-D medical imaging applications. These applications require continuous hardware servicing, and as a result dynamic partial reconfiguration (DPR) has been introduced. Comparative study for both non-partial and partial reconfiguration implementation has shown that DPR offers many advantages and leads to a compelling solution for implementing computationally intensive applications such as 3-D medical image compression. Using DPR, several large systems are mapped to small hardware resources, and the area, power consumption as well as maximum frequency are optimised and improved. Moreover, an FPGA-based architecture of the finite Radon transform (FRAT)with three design strategies has been proposed: direct implementation of pseudo-code with a sequential or pipelined description, and block random access memory (BRAM)- based method. An analysis with various medical imaging modalities has been carried out. Results obtained for image de-noising implementation using FRAT exhibits promising results in reducing Gaussian white noise in medical images. In terms of hardware implementation, promising trade-offs on maximum frequency, throughput and area are also achieved. Furthermore, a novel hardware implementation of 3-D medical image compression system with context-based adaptive variable length coding (CAVLC) has been proposed. An evaluation of the 3-D integer transform (IT) and the discrete wavelet transform (DWT) with lifting scheme (LS) for transform blocks reveal that 3-D IT demonstrates better computational complexity than the 3-D DWT, whilst the 3-D DWT with LS exhibits a lossless compression that is significantly useful for medical image compression. Additionally, an architecture of CAVLC that is capable of compressing high-definition (HD) images in real-time without any buffer between the quantiser and the entropy coder is proposed. Through a judicious parallelisation, promising results have been obtained with limited resources. In summary, this research is tackling the issues of massive 3-D medical volumes data that requires compression as well as hardware implementation to accelerate the slowest operations in the system. Results obtained also reveal a significant achievement in terms of the architecture efficiency and applications performance.Ministry of Higher Education Malaysia (MOHE), Universiti Tun Hussein Onn Malaysia (UTHM) and the British Counci

    Improving Compute & Data Efficiency of Flexible Architectures

    Get PDF

    The 1991 3rd NASA Symposium on VLSI Design

    Get PDF
    Papers from the symposium are presented from the following sessions: (1) featured presentations 1; (2) very large scale integration (VLSI) circuit design; (3) VLSI architecture 1; (4) featured presentations 2; (5) neural networks; (6) VLSI architectures 2; (7) featured presentations 3; (8) verification 1; (9) analog design; (10) verification 2; (11) design innovations 1; (12) asynchronous design; and (13) design innovations 2

    Generation of Application Specific Hardware Extensions for Hybrid Architectures: The Development of PIRANHA - A GCC Plugin for High-Level-Synthesis

    Get PDF
    Architectures combining a field programmable gate array (FPGA) and a general-purpose processor on a single chip became increasingly popular in recent years. On the one hand, such hybrid architectures facilitate the use of application specific hardware accelerators that improve the performance of the software on the host processor. On the other hand, it obliges system designers to handle the whole process of hardware/software co-design. The complexity of this process is still one of the main reasons, that hinders the widespread use of hybrid architectures. Thus, an automated process that aids programmers with the hardware/software partitioning and the generation of application specific accelerators is an important issue. The method presented in this thesis neither requires restrictions of the used high-level-language nor special source code annotations. Usually, this is an entry barrier for programmers without deeper understanding of the underlying hardware platform. This thesis introduces a seamless programming flow that allows generating hardware accelerators for unrestricted, legacy C code. The implementation consists of a GCC plugin that automatically identifies application hot-spots and generates hardware accelerators accordingly. Apart from the accelerator implementation in a hardware description language, the compiler plugin provides the generation of a host processor interfaces and, if necessary, a prototypical integration with the host operating system. An evaluation with typical embedded applications shows general benefits of the approach, but also reveals limiting factors that hamper possible performance improvements
    corecore