12,746 research outputs found

    Polarization of the Renyi Information Dimension with Applications to Compressed Sensing

    Full text link
    In this paper, we show that the Hadamard matrix acts as an extractor over the reals of the Renyi information dimension (RID), in an analogous way to how it acts as an extractor of the discrete entropy over finite fields. More precisely, we prove that the RID of an i.i.d. sequence of mixture random variables polarizes to the extremal values of 0 and 1 (corresponding to discrete and continuous distributions) when transformed by a Hadamard matrix. Further, we prove that the polarization pattern of the RID admits a closed form expression and follows exactly the Binary Erasure Channel (BEC) polarization pattern in the discrete setting. We also extend the results from the single- to the multi-terminal setting, obtaining a Slepian-Wolf counterpart of the RID polarization. We discuss applications of the RID polarization to Compressed Sensing of i.i.d. sources. In particular, we use the RID polarization to construct a family of deterministic ±1\pm 1-valued sensing matrices for Compressed Sensing. We run numerical simulations to compare the performance of the resulting matrices with that of random Gaussian and random Hadamard matrices. The results indicate that the proposed matrices afford competitive performances while being explicitly constructed.Comment: 12 pages, 2 figure

    Polar codes in network quantum information theory

    Get PDF
    Polar coding is a method for communication over noisy classical channels which is provably capacity-achieving and has an efficient encoding and decoding. Recently, this method has been generalized to the realm of quantum information processing, for tasks such as classical communication, private classical communication, and quantum communication. In the present work, we apply the polar coding method to network quantum information theory, by making use of recent advances for related classical tasks. In particular, we consider problems such as the compound multiple access channel and the quantum interference channel. The main result of our work is that it is possible to achieve the best known inner bounds on the achievable rate regions for these tasks, without requiring a so-called quantum simultaneous decoder. Thus, our work paves the way for developing network quantum information theory further without requiring a quantum simultaneous decoder.Comment: 18 pages, 2 figures, v2: 10 pages, double column, version accepted for publicatio

    Partial Sums Generation Architecture for Successive Cancellation Decoding of Polar Codes

    Full text link
    Polar codes are a new family of error correction codes for which efficient hardware architectures have to be defined for the encoder and the decoder. Polar codes are decoded using the successive cancellation decoding algorithm that includes partial sums computations. We take advantage of the recursive structure of polar codes to introduce an efficient partial sums computation unit that can also implements the encoder. The proposed architecture is synthesized for several codelengths in 65nm ASIC technology. The area of the resulting design is reduced up to 26% and the maximum working frequency is improved by ~25%.Comment: Submitted to IEEE Workshop on Signal Processing Systems (SiPS)(26 April 2012). Accepted (28 June 2013

    Polar Coding for Secure Transmission and Key Agreement

    Get PDF
    Wyner's work on wiretap channels and the recent works on information theoretic security are based on random codes. Achieving information theoretical security with practical coding schemes is of definite interest. In this note, the attempt is to overcome this elusive task by employing the polar coding technique of Ar{\i}kan. It is shown that polar codes achieve non-trivial perfect secrecy rates for binary-input degraded wiretap channels while enjoying their low encoding-decoding complexity. In the special case of symmetric main and eavesdropper channels, this coding technique achieves the secrecy capacity. Next, fading erasure wiretap channels are considered and a secret key agreement scheme is proposed, which requires only the statistical knowledge of the eavesdropper channel state information (CSI). The enabling factor is the creation of advantage over Eve, by blindly using the proposed scheme over each fading block, which is then exploited with privacy amplification techniques to generate secret keys.Comment: Proceedings of the 21st Annual IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC 2010), Sept. 2010, Istanbul, Turke

    On the Construction of Polar Codes for Achieving the Capacity of Marginal Channels

    Full text link
    Achieving security against adversaries with unlimited computational power is of great interest in a communication scenario. Since polar codes are capacity achieving codes with low encoding-decoding complexity and they can approach perfect secrecy rates for binary-input degraded wiretap channels in symmetric settings, they are investigated extensively in the literature recently. In this paper, a polar coding scheme to achieve secrecy capacity in non-symmetric binary input channels is proposed. The proposed scheme satisfies security and reliability conditions. The wiretap channel is assumed to be stochastically degraded with respect to the legitimate channel and message distribution is uniform. The information set is sent over channels that are good for Bob and bad for Eve. Random bits are sent over channels that are good for both Bob and Eve. A frozen vector is chosen randomly and is sent over channels bad for both. We prove that there exists a frozen vector for which the coding scheme satisfies reliability and security conditions and approaches the secrecy capacity. We further empirically show that in the proposed scheme for non-symmetric binary-input discrete memoryless channels, the equivocation rate achieves its upper bound in the whole capacity-equivocation region
    • …
    corecore