17,652 research outputs found

    Development of a Computer Vision-Based Three-Dimensional Reconstruction Method for Volume-Change Measurement of Unsaturated Soils during Triaxial Testing

    Get PDF
    Problems associated with unsaturated soils are ubiquitous in the U.S., where expansive and collapsible soils are some of the most widely distributed and costly geologic hazards. Solving these widespread geohazards requires a fundamental understanding of the constitutive behavior of unsaturated soils. In the past six decades, the suction-controlled triaxial test has been established as a standard approach to characterizing constitutive behavior for unsaturated soils. However, this type of test requires costly test equipment and time-consuming testing processes. To overcome these limitations, a photogrammetry-based method has been developed recently to measure the global and localized volume-changes of unsaturated soils during triaxial test. However, this method relies on software to detect coded targets, which often requires tedious manual correction of incorrectly coded target detection information. To address the limitation of the photogrammetry-based method, this study developed a photogrammetric computer vision-based approach for automatic target recognition and 3D reconstruction for volume-changes measurement of unsaturated soils in triaxial tests. Deep learning method was used to improve the accuracy and efficiency of coded target recognition. A photogrammetric computer vision method and ray tracing technique were then developed and validated to reconstruct the three-dimensional models of soil specimen

    XMM-Newton observations of the first unidentified TeV gamma-ray source TeV J2032+4130

    Full text link
    (abridged) The first unidentified very high energy gamma ray source (TeV J2032+4130) in the Cygnus region has been the subject of intensive search for a counterpart source at other wavelengths. A deep (50\approx 50 ksec) exposure of TeV J2032+4130 with \textit{XMM-Newton} has been obtained. The contribution of point sources to the observed X-ray emission from TeV J2032+4130 is subtracted from the data. The point-source subtracted X-ray data are analyzed using blank sky exposures and regions adjacent to the position of TeV J2032+4130 in the field of view covered by the XMM-Newton telescopes to search for diffuse X-ray emission. An extended X-ray emission region with a full width half maximum (FWHM) size of 12\approx 12 arc min is found. The centroid of the emission is co-located with the position of TeV J2032+4130.The energy spectrum of the emission coinciding with the position and extension of TeV J2032+4130 can be modeled by a power-law model with a photon index Γ=1.5±0.2stat±0.3sys\Gamma=1.5\pm0.2_\mathrm{stat}\pm0.3_\mathrm{sys} and an energy flux integrated between 2 and 10 keV of f210keV71013f_{2-10 \mathrm{keV}} \approx 7\cdot 10^{-13} ergs/(cm2^2 s) which is lower than the very high energy gamma-ray flux observed from TeV J2032+4130. We conclude that the faint extended X-ray emission discovered in this observation is the X-ray counterpart of TeV J2032+4130. Formally, it can not be excluded that the extended emission is due to an unrelated population of faint, hot (kBT10k_BT\approx 10 keV) unresolved point-sources which by chance coincides with the position and extension of TeV J2032+4130. We discuss our findings in the frame of both hadronic and leptonic gamma-ray production scenarios.Comment: 5 Pages, 3 Figures, accepted for publication in A&

    Multi-aperture foveated imaging

    Get PDF
    Foveated imaging, such as that evolved by biological systems to provide high angular resolution with a reduced space–bandwidth product, also offers advantages for man-made task-specific imaging. Foveated imaging systems using exclusively optical distortion are complex, bulky, and high cost, however. We demonstrate foveated imaging using a planar array of identical cameras combined with a prism array and superresolution reconstruction of a mosaicked image with a foveal variation in angular resolution of 5.9:1 and a quadrupling of the field of view. The combination of low-cost, mass-produced cameras and optics with computational image recovery offers enhanced capability of achieving large foveal ratios from compact, low-cost imaging systems

    Dr TIM: Ray-tracer TIM, with additional specialist scientific capabilities

    Full text link
    We describe several extensions to TIM, a raytracing program for ray-optics research. These include relativistic raytracing; simulation of the external appearance of Eaton lenses, Luneburg lenses and generalized focusing gradient-index (GGRIN) lenses, which are types of perfect imaging devices; raytracing through interfaces between spaces with different optical metrics; and refraction with generalised confocal lenslet arrays, which are particularly versatile METATOYs.Comment: 12 pages, 16 figure

    Baseline and triangulation geometry in a standard plenoptic camera

    Get PDF
    In this paper, we demonstrate light field triangulation to determine depth distances and baselines in a plenoptic camera. The advancement of micro lenses and image sensors enabled plenoptic cameras to capture a scene from different viewpoints with sufficient spatial resolution. While object distances can be inferred from disparities in a stereo viewpoint pair using triangulation, this concept remains ambiguous when applied in case of plenoptic cameras. We present a geometrical light field model allowing the triangulation to be applied to a plenoptic camera in order to predict object distances or to specify baselines as desired. It is shown that distance estimates from our novel method match those of real objects placed in front of the camera. Additional benchmark tests with an optical design software further validate the model’s accuracy with deviations of less than 0:33 % for several main lens types and focus settings. A variety of applications in the automotive and robotics field can benefit from this estimation model

    Energy-Efficient Interactive Ray Tracing of Static Scenes on Programmable Mobile GPUs

    Get PDF
    Mobile technology is improving in quality and capability faster now than ever before. When first introduced, cell phones were strictly used to make voice calls; now, they play satellite radio, MP3s, streaming television, have GPS and navigation capabilities, and have multi-megapixel video cameras. In the near future, cell phones will have programmable graphics processing units (GPU) that will allow users to play games similar to those currently available for top-of-the-line game consoles. Personal digital assistants enable users with full email, scheduling, and internet browsing capabilities in addition to those features offered on cell phones. Underlying all this mobile technology and entertainment is a battery whose technology has just barely tripled in the past 15 years, compared to available disk capacity that has increased over 1,000-fold. Ray tracing is a rendering technique used to generate photorealistic images that include reflections, refraction, participating media, and can fairly easily be extended to include photon mapping for indirect illumination and caustics. In recent years, ray tracing has been implemented on the GPU using various acceleration structures to facilitate rendering. Until now, all studies have used build time and achievable frame rates to determine which acceleration structure is best for ray tracing. We present the very first results comparing both CPU and GPU raytracing using various acceleration structures in terms of energy consumption. By exploring per-pixel costs, we provide insight on the energy consumption and frame rates that can be experienced on cell phones and other mobile devices based on currently available screen resolutions. Our results show that the choice in processing unit has the greatest affect on energy and time costs of ray tracing, followed by the size of the viewport used, and the choice of acceleration structure has the least impact on efficiency. For mobile devices enabled with a programmable GPU, whether it is a cell phone, PDA, or laptop computer, a bounding volume hierarchy implemented on the GPU is the most energy-efficient acceleration structure for ray tracing. Ray tracing on cellular phones with smaller screen resolutions is most energy-efficient using a CPU-based Kd-Tree implementation

    Embedded FIR filter design for real-time refocusing using a standard plenoptic video camera

    Get PDF
    Copyright 2014 Society of Photo-Optical Instrumentation Engineers and IS&T—The Society for Imaging Science and Technology. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.A novel and low-cost embedded hardware architecture for real-time refocusing based on a standard plenoptic camera is presented in this study. The proposed layout design synthesizes refocusing slices directly from micro images by omitting the process for the commonly used sub-aperture extraction. Therefore, intellectual property cores, containing switch controlled Finite Impulse Response (FIR) filters, are developed and applied to the Field Programmable Gate Array (FPGA) XC6SLX45 from Xilinx. Enabling the hardware design to work economically, the FIR filters are composed of stored product as well as upsampling and interpolation techniques in order to achieve an ideal relation between image resolution, delay time, power consumption and the demand of logic gates. The video output is transmitted via High-Definition Multimedia Interface (HDMI) with a resolution of 720p at a frame rate of 60 fps conforming to the HD ready standard. Examples of the synthesized refocusing slices are presented
    corecore