60 research outputs found

    The design and construction of a far-infrared spectrometer for the spectral region of 30-1600 microns

    Get PDF
    Far infrared spectrometer for region from 30 to 1600 microns - design and constructio

    Optimization and uncertainty quantification of gradient index metasurfaces

    Get PDF
    The design of intrinsically flat two-dimensional optical components, i.e., metasurfaces, generally requires an extensive parameter search to target the appropriate scattering properties of their constituting building blocks. Such design methodologies neglect important near-field interaction effects, playing an essential role in limiting the device performance. Optimization of transmission, phase-addressing and broadband performances of metasurfaces require new numerical tools. Additionally, uncertainties and systematic fabrication errors should be analysed. These estimations, of critical importance in the case of large production of metaoptics components, are useful to further project their deployment in industrial applications. Here, we report on a computational methodology to optimize metasurface designs. We complement this computational methodology by quantifying the impact of fabrication uncertainties on the experimentally characterized components. This analysis provides general perspectives on the overall metaoptics performances, giving an idea of the expected average behavior of a large number of devices

    Gratings: Theory and Numeric Applications, Second Revisited Edition

    Get PDF
    International audienceThe second Edition of the Book contains 13 chapters, written by an international team of specialist in electromagnetic theory, numerical methods for modelling of light diffraction by periodic structures having one-, two-, or three-dimensional periodicity, and aiming numerous applications in many classical domains like optical engineering, spectroscopy, and optical telecommunications, together with newly born fields such as photonics, plasmonics, photovoltaics, metamaterials studies, cloaking, negative refraction, and super-lensing. Each chapter presents in detail a specific theoretical method aiming to a direct numerical application by university and industrial researchers and engineers.In comparison with the First Edition, we have added two more chapters (ch.12 and ch.13), and revised four other chapters (ch.6, ch.7, ch.10, and ch.11

    Gratings: Theory and Numeric Applications

    Get PDF
    International audienceThe book containes 11 chapters written by an international team of specialist in electromagnetic theory, numerical methods for modelling of light diffraction by periodic structures having one-, two-, or three-dimensional periodicity, and aiming numerous applications in many classical domains like optical engineering, spectroscopy, and optical telecommunications, together with newly born fields such as photonics, plasmonics, photovoltaics, metamaterials studies, cloaking, negative refraction, and super-lensing. Each chapter presents in detail a specific theoretical method aiming to a direct numerical application by university and industrial researchers and engineers

    Stacked dielectric gratings for sub-wavelength surface field synthesis

    Full text link
    A method is developed to enhance the amplitudes of the non-propagating evanescent orders of resonant dielectric gratings. The origin of these resonances is analyzed in detail. The method relies on interactions between stacked gratings with different periods, and so a formalism is developed to model such stacks mathematically. In addition, a theoretical approach is developed to design gratings that enhance or blaze desired orders. These orders, controlled independently by incident fields from different angles, interfere and are optimized to produce steerable sub-Rayleigh field concentrations on a surface. These spots may function as a virtual scanning probe for non-invasive sub-Rayleigh microscopy. Optimization is conducted using a Monte Carlo Markov chain, and spots are generated which are both 1 order of magnitude narrower than the free space Rayleigh limit and robust to noise in the incident fields. © 2010 Optical Society of America

    Theory, manufacture and performance of holographic X-ray gratings

    Get PDF
    Imperial Users onl

    Electromagnetic Waves

    Get PDF
    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, and finally, the biological effects and medical applications of electromagnetic fields
    • …
    corecore