29 research outputs found

    Serendipity and Tensor Product Affine Pyramid Finite Elements

    Get PDF
    Using the language of finite element exterior calculus, we define two families of H1H^1-conforming finite element spaces over pyramids with a parallelogram base. The first family has matching polynomial traces with tensor product elements on the base while the second has matching polynomial traces with serendipity elements on the base. The second family is new to the literature and provides a robust approach for linking between Lagrange elements on tetrahedra and serendipity elements on affinely-mapped cubes while preserving continuity and approximation properties. We define shape functions and degrees of freedom for each family and prove unisolvence and polynomial reproduction results.Comment: Accepted to SMAI Journal of Computational Mathematic

    A Comparison of High Order Interpolation Nodes for the Pyramid

    Get PDF
    The use of pyramid elements is crucial to the construction of efficient hex-dominant meshes. For conforming nodal finite element methods with mixed element types, it is advantageous for nodal distributions on the faces of the pyramid to match those on the faces and edges of hexahedra and tetrahedra. We adapt existing procedures for constructing optimized tetrahedral nodal sets for high order interpolation to the pyramid with constrained face nodes, including two generalizations of the explicit Warp and Blend construction of nodes on the tetrahedron.Comment: Submitted to SIAM:SIS

    Doctor of Philosophy

    Get PDF
    dissertationThe motivation for this work is the forward and inverse problem for magnetotellurics, a frequency domain electromagnetic remote-sensing geophysical method used in mineral, geothermal, and groundwater exploration. The dissertation consists of four papers. In the first paper, we prove the existence and uniqueness of a representation of any vector field in H(curl) by a vector lying in H(curl) and H(div). It allows us to represent electric or magnetic fields by another vector field, for which nodal finite element approximation may be used in the case of non-constant electromagnetic properties. With this approach, the system matrix does not become ill-posed for lowfrequency In the second paper, we consider hexahedral finite element approximation of an electric field for the magnetotelluric forward problem. The near-null space of the system matrix for low frequencies makes the numerical solution unstable in the air. We show that the proper solution may obtained by applying a correction on the null space of the curl. It is done by solving a Poisson equation using discrete Helmholtz decomposition. We parallelize the forward code on multicore workstation with large RAM. In the next paper, we use the forward code in the inversion. Regularization of the inversion is done by using the second norm of the logarithm of conductivity. The data space Gauss-Newton approach allows for significant savings in memory and computational time. We show the efficiency of the method by considering a number of synthetic inversions and we apply it to real data collected in Cascade Mountains. The last paper considers a cross-frequency interpolation of the forward response as well as the Jacobian. We consider Pade approximation through model order reduction and rational Krylov subspace. The interpolating frequencies are chosen adaptively in order to minimize the maximum error of interpolation. Two error indicator functions are compared. We prove a theorem of almost always lucky failure in the case of the right hand analytically dependent on frequency. The operator's null space is treated by decomposing the solution into the part in the null space and orthogonal to it

    An extensive English language bibliography on graph theory and its applications

    Get PDF
    Bibliography on graph theory and its application

    Combinatorial Problems in Energy Networks - Graph-theoretic Models and Algorithms

    Get PDF
    Energienetze bilden das Rückgrat unserer Gesellschaft, die unter anderem unsere Nahrungskette und andere wichtige Infrastrukturen, wie die Wasser- und Wärmeversorgung, bestimmen. Um die grundlegenden menschlichen Bedürfnisse zu befriedigen, müssen wir ein nachhaltigeres und umweltfreundlicheres Verhalten im Allgemeinen und in Energienetzen im Speziellen an den Tag legen. In dieser Arbeit geht es um Energienetze, wobei wir uns auf Stromnetze spezialisieren und uns darauf fokussieren, wie wir die vorhandene Infrastruktur besser ausnutzen können. Wir merken an, dass die Ergebnisse aus dieser Arbeit auch auf andere Energienetze übertragen werden können [Gro+19] und bestimmte auftretende Phänomene legen es nahe, dass sich einige Ergebnisse eventuell auch auf Verkehrsnetze übertragen lassen. Diese Arbeit besteht aus vier inhaltlichen Teilen. Der erste Teil beschäftigt sich mit der Funktionsweise und Struktur von elektrischen Flüssen. Der zweite und dritte inhaltliche Teil der Arbeit beschäftigt sich jeweils mit der effizienten Ausnutzung der vorhandenen Energienetzinfrastruktur. Dabei verstehen wir hier unter effizienter Ausnutzung entweder die Maximierung der Gesamterzeugung und die damit verbundene Erweiterung des Betriebspunktes oder die Minimierung der Erzeugungskosten verstehen. Das elektrische Netz besteht aus drei Spannungsebenen, die wir als Hoch-, Mittel-, und Niederspannungsebene bezeichnen. Das traditionelle elektrische Netz ist auf eine zentrale Energieversorgung ausgelegt, bei der die Erzeuger sich in der Hochspannungsebene befinden. Der elektrische Fluss im klassischen Sinne fließt von der Hoch- in die Mittel- und Niederspannungsebene. Die industriellen Verbraucher befinden sich zumeist auf der Mittelspannungsebene, während sich die Haushalte und kleineren Industrien in der Niederspannungsebene befinden. Durch nachhaltige Erzeuger, die ihre Energie aus erneuerbaren Energien wie beispielsweise Wind gewinnen, findet nun ein Paradigmenwechsel im elektrischen Netz statt. Diese nachhaltigen Erzeuger befinden sich zumeist im Nieder- und Mittelspannungsnetz und der elektrische Fluss könnte nun bidirektional fließen. Dieser Paradigmenwechsel kann zu Engpässen und anderen Problemen führen, da das elektrische Netz für ein solches Szenario nicht konzipiert ist. Eine Hauptaufgabe dieser Arbeit war die Identifizierung von Problemstellungen in elektrischen Netzen. Die extrahierten Problemstellungen haben wir dann in graphentheoretische Modelle übersetzt und Algorithmen entwickelt, die oftmals Gütegarantien besitzen. Wir haben uns dabei zunächst auf die Modellierung von elektrischen Netzen und das Verhalten von Flüssen in diesen Netzen mit Hilfe von Graphentheorie konzentriert. Zur Modellierung des elektrischen Flusses nutzen wir eine linearisierte Modellierung, die mehrere vereinfachende Annahmen trifft. Diese linearisierte Modellierung ist für Hochspannungsnetze im Allgemeinen eine gute Annäherung und macht das Entscheidungsproblem für elektrische Flüsse, das heißt, ob ein gültiger elektrischer Fluss für eine bestimmte Konfiguration des Netzes und für einen bestimmten Verbrauch und eine bestimmte Erzeugung existiert, in Polynomialzeit lösbar. Leistungsfluss. Fokusiert man sich auf das vereinfachte Zulässigkeitsproblem von elektrischen Flüssen und den Maximalen Leistungsflüssen, so existieren verschiedene mathematische Formulierungen, die den Leistungsfluss beschreiben. Auf allgemeinen Graphen ist es oftmals der Fall, dass graphentheoretischen Flüsse keine zulässigen Leistungsflüsse darstellen. Im Gegensatz zu graphentheoretischen Flüssen balancieren sich Leistungsflüsse. Wir diskutieren diese Eigenschaft aus graphentheoretischer Sicht. Die verschiedenen mathematischen Formulierungen geben uns strukturelle Einblicke in das Leistungsflussproblem. Sie zeigen uns die Dualität der zwei Kirchhoffschen Regeln. Diese nutzen wir um einen algorithmischen Ansatz zur Berechnung von Leistungsflüssen zu formulieren, der zu einem Algorithmus für Leistungsflüsse auf planaren Graphen führen könnte. Die Einschränkung auf planare zweifachzusammenhängende Graphen ist vertretbar, da elektrische Netze im Allgemeinen planar sind [COC12,S.13]. Zudem hilft uns diese Sichtweise, um Analogien zu anderen geometrischen Problemen herzustellen. Kontinuierliche Änderungen. Da graphentheoretische Flüsse sich in vielen Fällen anders als elektrische Flüsse verhalten, haben wir versucht, das Stromnetz mittels Kontrolleinheiten so auszustatten, dass der elektrische Fluss den gleichen Wert hat wie der graphentheoretische Fluss. Um dieses Ziel zu erreichen, platzieren wir die Kontrolleinheiten entweder an den Knoten oder an den Kanten. Durch eine Suszeptanz-Skalierung, die durch die Kontrolleinheiten ermöglicht wird, ist es nun prinzipiell möglich jeden graphentheoretischen Fluss elektrisch zulässig zu machen. Dabei konnten wir zeigen, dass das gezielte Platzieren von Kontrolleinheiten die Kosten der Erzeugung von elektrischer Leistung durch Generatoren im elektrischen Netz senken kann und den Betriebspunkt des Netzes in vielen Fällen auch erweitert. Platziert man Kontrolleinheiten so, dass der verbleibende Teil (d.h. das Netz ohne die Kontrolleinheiten) ein Baum oder Kaktus unter geeigneter Begrenzung der Kapazitäten ist, so ist es möglich, jeden graphentheoretischen Fluss als elektrisch zulässigen Fluss mit gleichwertigen Kosten zu realisieren. Die Kostensenkung und die Erweiterung des Betriebspunktes konnten wir experimentell auf IEEE-Benchmark-Daten bestätigen. Diskrete Änderungen. Die oben beschriebenen Kontrolleinheiten sind eine idealisierte, aktuell nicht realisierbare Steuereinheit, da sie den elektrischen Fluss im gesamten Leistungsspektrum einstellen können. Damit ist vor allem gemeint, dass sie den elektrischen Fluss auf einer Leitung von „Die Leitung ist abgeschaltet.“ bis zur maximalen Kapazität stufenlos einstellen können. Diese Idealisierung ist auch ein großer Kritikpunkt an der Modellierung. Aus diesem Grund haben wir versucht, unser Modell realistischer zu gestalten. Wir haben zwei mögliche Modellierungen identifiziert. In der ersten Modellierung können Leitungen ein- und ausgeschaltet werden. Dieser Prozess wird als Switching bezeichnet und kann in realen Netzen mittels Circuit Breakers (dt. Leistungsschaltern) realisiert werden. Die zweite Modellierung kommt der Kontrolleinheiten-Modellierung sehr nahe und beschäftigt sich mit der Platzierung von Kontrolleinheiten, die die Suszeptanz innerhalb eines gewissen Intervalls einstellen können. Diese wirkt im ersten Moment wie eine Verallgemeinerung der Schaltungsflussmodellierung. Nutzt man jedoch eine realistischere Modellierung der Kontrolleinheiten, so ist das Einstellen der Suszeptanz durch ein Intervall begrenzt, das das Ausschalten einer Leitung nicht mit beinhaltet. Sowohl ein optimales (im Sinne der Minimierung der Gesamterzeugungskosten oder der Maximierung des Durchsatzes) Platzieren von Switches als auch ein optimales Platzieren von Kontrolleinheiten ist im Allgemeinen NP-schwer [LGH14]. Diese beiden Probleme ergänzen sich dahingehend, dass man den maximalen graphentheoretischen Fluss, mit den zuvor genannten Platzierungen annähern kann. Für Switching konnten wir zeigen, dass das Problem bereits schwer ist, wenn der Graph serien-parallel ist und das Netzwerk nur einen Erzeuger und einen Verbraucher besitzt [Gra+18]. Wir haben sowohl für den Maximalen Übertragungsschaltungsfluss (engl. Maximum Transmission Switching Flow; kurz MTSF) als auch für den optimalen Übertragungsschaltungsfluss (engl. Optimal Switching Flow; kurz OSF) erste algorithmische Ansätze vorgeschlagen und gezeigt, dass sie auf bestimmten graphentheoretischen Strukturen exakt sind, und dass auf anderen graphentheoretischen Strukturen Gütegarantien möglich sind [Gra+18]. Die Algorithmen haben wir dann auf allgemeinen Netzen evaluiert. Simulationen führen zu guten Ergebnissen auf den NESTA-Benchmark-Daten. Erweiterungsplanung auf der Grünen Wiese. Eine vom Rest der Arbeit eher losgelöste Fragestellung war die Verkabelung von Windturbinen. Unter Verwendung einer Metaheuristik haben wir gute Ergebnisse im Vergleich zu einem „Mixed Integer Linear Program“ (MILP; dt. gemischt-ganzzahliges lineares Programm) erzielt, das wir nach einer Stunde abgebrochen haben. Die Modellierung der Problemstellung und die Evaluation des Algorithmus haben wir auf der ACM e-Energy 2017 veröffentlicht [Leh+17]. Schlusswort. Abschließend kann man sagen, dass mit dieser Arbeit allgemeine, tiefliegende Aussagen über elektrische Netze getroffen wurden, unter der Berücksichtigung struktureller Eigenschaften unterschiedlicher Netzklassen. Diese Arbeit zeigt wie das Netz ausgestaltet sein muss, um bestimmte Eigenschaften garantieren zu können und zeigt verschiedene Lösungsansätze mit oft beweisbaren Gütegarantien auf

    A Statistical Perspective of the Empirical Mode Decomposition

    Get PDF
    This research focuses on non-stationary basis decompositions methods in time-frequency analysis. Classical methodologies in this field such as Fourier Analysis and Wavelet Transforms rely on strong assumptions of the underlying moment generating process, which, may not be valid in real data scenarios or modern applications of machine learning. The literature on non-stationary methods is still in its infancy, and the research contained in this thesis aims to address challenges arising in this area. Among several alternatives, this work is based on the method known as the Empirical Mode Decomposition (EMD). The EMD is a non-parametric time-series decomposition technique that produces a set of time-series functions denoted as Intrinsic Mode Functions (IMFs), which carry specific statistical properties. The main focus is providing a general and flexible family of basis extraction methods with minimal requirements compared to those within the Fourier or Wavelet techniques. This is highly important for two main reasons: first, more universal applications can be taken into account; secondly, the EMD has very little a priori knowledge of the process required to apply it, and as such, it can have greater generalisation properties in statistical applications across a wide array of applications and data types. The contributions of this work deal with several aspects of the decomposition. The first set regards the construction of an IMF from several perspectives: (1) achieving a semi-parametric representation of each basis; (2) extracting such semi-parametric functional forms in a computationally efficient and statistically robust framework. The EMD belongs to the class of path-based decompositions and, therefore, they are often not treated as a stochastic representation. (3) A major contribution involves the embedding of the deterministic pathwise decomposition framework into a formal stochastic process setting. One of the assumptions proper of the EMD construction is the requirement for a continuous function to apply the decomposition. In general, this may not be the case within many applications. (4) Various multi-kernel Gaussian Process formulations of the EMD will be proposed through the introduced stochastic embedding. Particularly, two different models will be proposed: one modelling the temporal mode of oscillations of the EMD and the other one capturing instantaneous frequencies location in specific frequency regions or bandwidths. (5) The construction of the second stochastic embedding will be achieved with an optimisation method called the cross-entropy method. Two formulations will be provided and explored in this regard. Application on speech time-series are explored to study such methodological extensions given that they are non-stationary
    corecore