2,933 research outputs found

    Relativistic model for nuclear matter and atomic nuclei with momentum-dependent self-energies

    Full text link
    The Lagrangian density of standard relativistic mean-field (RMF) models with density-dependent meson-nucleon coupling vertices is modified by introducing couplings of the meson fields to derivative nucleon densities. As a consequence, the nucleon self energies, that describe the effective in-medium interaction, become momentum dependent. In this approach it is possible to increase the effective (Landau) mass of the nucleons, that is related to the density of states at the Fermi energy, as compared to conventional relativistic models. At the same time the relativistic effective (Dirac) mass is kept small in order to obtain a realistic strength of the spin-orbit interaction. Additionally, the empirical Schroedinger-equivalent central optical potential from Dirac phenomenology is reasonably well described. A parametrization of the model is obtained by a fit to properties of doubly magic atomic nuclei. Results for symmetric nuclear matter, neutron matter and finite nuclei are discussed.Comment: 14 pages, 7 figures, 5 tables, extended introduction and conclusions, additional references, minor corrections, accepted for publication in Phys. Rev.

    Decay properties of spectral projectors with applications to electronic structure

    Full text link
    Motivated by applications in quantum chemistry and solid state physics, we apply general results from approximation theory and matrix analysis to the study of the decay properties of spectral projectors associated with large and sparse Hermitian matrices. Our theory leads to a rigorous proof of the exponential off-diagonal decay ("nearsightedness") for the density matrix of gapped systems at zero electronic temperature in both orthogonal and non-orthogonal representations, thus providing a firm theoretical basis for the possibility of linear scaling methods in electronic structure calculations for non-metallic systems. We further discuss the case of density matrices for metallic systems at positive electronic temperature. A few other possible applications are also discussed.Comment: 63 pages, 13 figure

    Effective Summation and Interpolation of Series by Self-Similar Root Approximants

    Full text link
    We describe a simple analytical method for effective summation of series, including divergent series. The method is based on self-similar approximation theory resulting in self-similar root approximants. The method is shown to be general and applicable to different problems, as is illustrated by a number of examples. The accuracy of the method is not worse, and in many cases better, than that of Pade approximants, when the latter can be defined.Comment: Latex file, 18 page
    • …
    corecore