118 research outputs found

    The Relation Between Offset and Conchoid Constructions

    Full text link
    The one-sided offset surface Fd of a given surface F is, roughly speaking, obtained by shifting the tangent planes of F in direction of its oriented normal vector. The conchoid surface Gd of a given surface G is roughly speaking obtained by increasing the distance of G to a fixed reference point O by d. Whereas the offset operation is well known and implemented in most CAD-software systems, the conchoid operation is less known, although already mentioned by the ancient Greeks, and recently studied by some authors. These two operations are algebraic and create new objects from given input objects. There is a surprisingly simple relation between the offset and the conchoid operation. As derived there exists a rational bijective quadratic map which transforms a given surface F and its offset surfaces Fd to a surface G and its conchoidal surface Gd, and vice versa. Geometric properties of this map are studied and illustrated at hand of some complete examples. Furthermore rational universal parameterizations for offsets and conchoid surfaces are provided

    Conchoid surfaces of spheres

    Get PDF
    The conchoid of a surface FF with respect to given fixed point OO is roughly speaking the surface obtained by increasing the radius function with respect to OO by a constant. This paper studies {\it conchoid surfaces of spheres} and shows that these surfaces admit rational parameterizations. Explicit parameterizations of these surfaces are constructed using the relations to pencils of quadrics in R3\R^3 and R4\R^4. Moreover we point to remarkable geometric properties of these surfaces and their construction

    Implicitization of rational surfaces using toric varieties

    Get PDF
    A parameterized surface can be represented as a projection from a certain toric surface. This generalizes the classical homogeneous and bihomogeneous parameterizations. We extend to the toric case two methods for computing the implicit equation of such a rational parameterized surface. The first approach uses resultant matrices and gives an exact determinantal formula for the implicit equation if the parameterization has no base points. In the case the base points are isolated local complete intersections, we show that the implicit equation can still be recovered by computing any non-zero maximal minor of this matrix. The second method is the toric extension of the method of moving surfaces, and involves finding linear and quadratic relations (syzygies) among the input polynomials. When there are no base points, we show that these can be put together into a square matrix whose determinant is the implicit equation. Its extension to the case where there are base points is also explored.Comment: 28 pages, 1 figure. Numerous major revisions. New proof of method of moving surfaces. Paper accepted and to appear in Journal of Algebr

    Offsets, Conchoids and Pedal Surfaces

    Get PDF
    We discuss three geometric constructions and their relations, namely the offset, the conchoid and the pedal construction. The offset surface F d of a given surface F is the set of points at fixed normal distance d of F. The conchoid surface G d of a given surface G is obtained by increasing the radius function by d with respect to a given reference point O. There is a nice relation between offsets and conchoids: The pedal surfaces of a family of offset surfaces are a family of conchoid surfaces. Since this relation is birational, a family of rational offset surfaces corresponds to a family of rational conchoid surfaces and vice versa. We present theoretical principles of this mapping and apply it to ruled surfaces and quadrics. Since these surfaces have rational offsets and conchoids, their pedal and inverse pedal surfaces are new classes of rational conchoid surfaces and rational offset surfaces

    Common transversals and tangents to two lines and two quadrics in P^3

    Get PDF
    We solve the following geometric problem, which arises in several three-dimensional applications in computational geometry: For which arrangements of two lines and two spheres in R^3 are there infinitely many lines simultaneously transversal to the two lines and tangent to the two spheres? We also treat a generalization of this problem to projective quadrics: Replacing the spheres in R^3 by quadrics in projective space P^3, and fixing the lines and one general quadric, we give the following complete geometric description of the set of (second) quadrics for which the 2 lines and 2 quadrics have infinitely many transversals and tangents: In the nine-dimensional projective space P^9 of quadrics, this is a curve of degree 24 consisting of 12 plane conics, a remarkably reducible variety.Comment: 26 pages, 9 .eps figures, web page with more pictures and and archive of computations: http://www.math.umass.edu/~sottile/pages/2l2s

    On special quadratic birational transformations of a projective space into a hypersurface

    Full text link
    We study transformations as in the title with emphasis on those having smooth connected base locus, called "special". In particular, we classify all special quadratic birational maps into a quadric hypersurface whose inverse is given by quadratic forms by showing that there are only four examples having general hyperplane sections of Severi varieties as base loci.Comment: Accepted for publication in Rendiconti del Circolo Matematico di Palerm

    Fibrations in complete intersections of quadrics, Clifford algebras, derived categories, and rationality problems

    Full text link
    Let X -> Y be a fibration whose fibers are complete intersections of two quadrics. We develop new categorical and algebraic tools---a theory of relative homological projective duality and the Morita invariance of the even Clifford algebra under quadric reduction by hyperbolic splitting---to study semiorthogonal decompositions of the bounded derived category of X. Together with new results in the theory of quadratic forms, we apply these tools in the case where X -> Y has relative dimension 1, 2, or 3, in which case the fibers are curves of genus 1, Del Pezzo surfaces of degree 4, or Fano threefolds, respectively. In the latter two cases, if Y is the projective line over an algebraically closed field of characteristic zero, we relate rationality questions to categorical representability of X.Comment: 43 pages, changes made and some material added and corrected in sections 1, 4, and 5; this is the final version accepted for publication at Journal de Math\'ematiques Pures et Appliqu\'ee

    A sagbi basis for the quantum Grassmannian

    Full text link
    The maximal minors of a p by (m + p) matrix of univariate polynomials of degree n with indeterminate coefficients are themselves polynomials of degree np. The subalgebra generated by their coefficients is the coordinate ring of the quantum Grassmannian, a singular compactification of the space of rational curves of degree np in the Grassmannian of p-planes in (m + p)-space. These subalgebra generators are shown to form a sagbi basis. The resulting flat deformation from the quantum Grassmannian to a toric variety gives a new `Gr\"obner basis style' proof of the Ravi-Rosenthal-Wang formulas in quantum Schubert calculus. The coordinate ring of the quantum Grassmannian is an algebra with straightening law, which is normal, Cohen-Macaulay, Gorenstein and Koszul, and the ideal of quantum Pl\"ucker relations has a quadratic Gr\"obner basis. This holds more generally for skew quantum Schubert varieties. These results are well-known for the classical Schubert varieties (n=0). We also show that the row-consecutive p by p-minors of a generic matrix form a sagbi basis and we give a quadratic Gr\"obner basis for their algebraic relations.Comment: 18 pages, 3 eps figure, uses epsf.sty. Dedicated to the memory of Gian-Carlo Rot
    corecore