215 research outputs found

    Rational-operator-based depth-from-defocus approach to scene reconstruction

    Get PDF
    This paper presents a rational-operator-based approach to depth from defocus (DfD) for the reconstruction of three-dimensional scenes from two-dimensional images, which enables fast DfD computation that is independent of scene textures. Two variants of the approach, one using the Gaussian rational operators (ROs) that are based on the Gaussian point spread function (PSF) and the second based on the generalized Gaussian PSF, are considered. A novel DfD correction method is also presented to further improve the performance of the approach. Experimental results are considered for real scenes and show that both approaches outperform existing RO-based methods

    Accurate depth from defocus estimation with video-rate implementation

    Get PDF
    The science of measuring depth from images at video rate using „defocus‟ has been investigated. The method required two differently focussed images acquired from a single view point using a single camera. The relative blur between the images was used to determine the in-focus axial points of each pixel and hence depth. The depth estimation algorithm researched by Watanabe and Nayar was employed to recover the depth estimates, but the broadband filters, referred as the Rational filters were designed using a new procedure: the Two Step Polynomial Approach. The filters designed by the new model were largely insensitive to object texture and were shown to model the blur more precisely than the previous method. Experiments with real planar images demonstrated a maximum RMS depth error of 1.18% for the proposed filters, compared to 1.54% for the previous design. The researched software program required five 2D convolutions to be processed in parallel and these convolutions were effectively implemented on a FPGA using a two channel, five stage pipelined architecture, however the precision of the filter coefficients and the variables had to be limited within the processor. The number of multipliers required for each convolution was reduced from 49 to 10 (79.5% reduction) using a Triangular design procedure. Experimental results suggested that the pipelined processor provided depth estimates comparable in accuracy to the full precision Matlab‟s output, and generated depth maps of size 400 x 400 pixels in 13.06msec, that is faster than the video rate. The defocused images (near and far-focused) were optically registered for magnification using Telecentric optics. A frequency domain approach based on phase correlation was employed to measure the radial shifts due to magnification and also to optimally position the external aperture. The telecentric optics ensured pixel to pixel registration between the defocused images was correct and provided more accurate depth estimates

    Accurate depth from defocus estimation with video-rate implementation

    Get PDF
    The science of measuring depth from images at video rate using „defocus‟ has been investigated. The method required two differently focussed images acquired from a single view point using a single camera. The relative blur between the images was used to determine the in-focus axial points of each pixel and hence depth. The depth estimation algorithm researched by Watanabe and Nayar was employed to recover the depth estimates, but the broadband filters, referred as the Rational filters were designed using a new procedure: the Two Step Polynomial Approach. The filters designed by the new model were largely insensitive to object texture and were shown to model the blur more precisely than the previous method. Experiments with real planar images demonstrated a maximum RMS depth error of 1.18% for the proposed filters, compared to 1.54% for the previous design. The researched software program required five 2D convolutions to be processed in parallel and these convolutions were effectively implemented on a FPGA using a two channel, five stage pipelined architecture, however the precision of the filter coefficients and the variables had to be limited within the processor. The number of multipliers required for each convolution was reduced from 49 to 10 (79.5% reduction) using a Triangular design procedure. Experimental results suggested that the pipelined processor provided depth estimates comparable in accuracy to the full precision Matlab‟s output, and generated depth maps of size 400 x 400 pixels in 13.06msec, that is faster than the video rate. The defocused images (near and far-focused) were optically registered for magnification using Telecentric optics. A frequency domain approach based on phase correlation was employed to measure the radial shifts due to magnification and also to optimally position the external aperture. The telecentric optics ensured pixel to pixel registration between the defocused images was correct and provided more accurate depth estimates.EThOS - Electronic Theses Online ServiceUniversity of Warwick (UoW)GBUnited Kingdo

    Depth from Defocus via Active Multispectral Quasi-random Point Projections using Deep Learning

    Get PDF
    A novel approach for inferring depth measurements via multispectralactive depth from defocus and deep learning has been designed,implemented, and successfully tested. The scene is activelyilluminated with a multispectral quasi-random point pattern,and a conventional RGB camera is used to acquire images of theprojected pattern. The projection points in the captured image ofthe projected pattern are analyzed using an ensemble of deep neuralnetworks to estimate the depth at each projection point. A finaldepth map is then reconstructed algorithmically based on the pointdepth estimates. Experiments using different test scenes with differentstructural characteristics show that the proposed approachcan produced improved depth maps compared to prior deep learningapproaches using monospectral projection patterns

    Depth from Defocus via Active Quasi-random Point Projections

    Get PDF
    Depth sensing has many practical applications in vision-relatedtasks. While many different depth measurement techniques existand depth camera technologies are constantly being advanced, activedepth sensing still rely on specialized hardware that are highlycomplex and costly. Motivated by this, we present a novel techniquefor inferring depth measurements via depth from defocus usingactive quasi-random point projection patterns. A quasi-randompoint projection pattern is projected onto the scene of interest, andeach projection point in the image captured by a camera is analysedusing a calibration model to estimate the depth at that point.The proposed method has a relatively simple setup, consisting of acamera and a projector, and enables depth inference from a singlecapture. Furthermore, the use of a quasi-random projection patterncan allow us to leverage compressive sensing theory to producefull depth maps in future applications. Experimental resultsshow the proposed system has strong potential for enabling activedepth sensing in a simple, efficient manner

    Computational approach for depth from defocus

    Get PDF
    Active depth from defocus (DFD) eliminates the main limitation faced by passive DFD, namely its inability to recover depth when dealing with scenes defined by weakly textured (or textureless) objects. This is achieved by projecting a dense illumination pattern onto the scene and depth can be recovered by measuring the local blurring of the projected pattern. Since the illumination pattern forces a strong dominant texture on imaged surfaces, the level of blurring is determined by applying a local operator (tuned on the frequency derived from the illumination pattern) as opposed to the case of window-based passive DFD where a large range of band pass operators are required. The choice of the local operator is a key issue in achieving precise and dense depth estimation. Consequently, in this paper we introduce a new focus operator and we propose refinements to compensate for the problems associated with a suboptimal local operator and a nonoptimized illumination pattern. The developed range sensor has been tested on real images and the results demonstrate that the performance of our range sensor compares well with those achieved by other implementations, where precise and computationally expensive optimization techniques are employed

    Coded aperture imaging

    Get PDF
    This thesis studies the coded aperture camera, a device consisting of a conventional camera with a modified aperture mask, that enables the recovery of both depth map and all-in-focus image from a single 2D input image. Key contributions of this work are the modeling of the statistics of natural images and the design of efficient blur identification methods in a Bayesian framework. Two cases are distinguished: 1) when the aperture can be decomposed in a small set of identical holes, and 2) when the aperture has a more general configuration. In the first case, the formulation of the problem incorporates priors about the statistical variation of the texture to avoid ambiguities in the solution. This allows to bypass the recovery of the sharp image and concentrate only on estimating depth. In the second case, the depth reconstruction is addressed via convolutions with a bank of linear filters. Key advantages over competing methods are the higher numerical stability and the ability to deal with large blur. The all-in-focus image can then be recovered by using a deconvolution step with the estimated depth map. Furthermore, for the purpose of depth estimation alone, the proposed algorithm does not require information about the mask in use. The comparison with existing algorithms in the literature shows that the proposed methods achieve state-of-the-art performance. This solution is also extended for the first time to images affected by both defocus and motion blur and, finally, to video sequences with moving and deformable objects
    corecore