1,785 research outputs found

    Two-dimensional signal processing with application to image restoration

    Get PDF
    A recursive technique for modeling and estimating a two-dimensional signal contaminated by noise is presented. A two-dimensional signal is assumed to be an undistorted picture, where the noise introduces the distortion. Both the signal and the noise are assumed to be wide-sense stationary processes with known statistics. Thus, to estimate the two-dimensional signal is to enhance the picture. The picture representing the two-dimensional signal is converted to one dimension by scanning the image horizontally one line at a time. The scanner output becomes a nonstationary random process due to the periodic nature of the scanner operation. Procedures to obtain a dynamical model corresponding to the autocorrelation function of the scanner output are derived. Utilizing the model, a discrete Kalman estimator is designed to enhance the image

    On dimension reduction in Gaussian filters

    Full text link
    A priori dimension reduction is a widely adopted technique for reducing the computational complexity of stationary inverse problems. In this setting, the solution of an inverse problem is parameterized by a low-dimensional basis that is often obtained from the truncated Karhunen-Loeve expansion of the prior distribution. For high-dimensional inverse problems equipped with smoothing priors, this technique can lead to drastic reductions in parameter dimension and significant computational savings. In this paper, we extend the concept of a priori dimension reduction to non-stationary inverse problems, in which the goal is to sequentially infer the state of a dynamical system. Our approach proceeds in an offline-online fashion. We first identify a low-dimensional subspace in the state space before solving the inverse problem (the offline phase), using either the method of "snapshots" or regularized covariance estimation. Then this subspace is used to reduce the computational complexity of various filtering algorithms - including the Kalman filter, extended Kalman filter, and ensemble Kalman filter - within a novel subspace-constrained Bayesian prediction-and-update procedure (the online phase). We demonstrate the performance of our new dimension reduction approach on various numerical examples. In some test cases, our approach reduces the dimensionality of the original problem by orders of magnitude and yields up to two orders of magnitude in computational savings

    Dynare: Reference Manual Version 4

    Get PDF
    Dynare is a software platform for handling a wide class of economic models, in particular dynamic stochastic general equilibrium (DSGE) and overlapping generations (OLG) models. The models solved by Dynare include those relying on the rational expectations hypothesis, wherein agents form their expectations about the future in a way consistent with the model. But Dynare is also able to handle models where expectations are formed differently: on one extreme, models where agents perfectly anticipate the future; on the other extreme, models where agents have limited rationality or imperfect knowledge of the state of the economy and, hence, form their expectations through a learning process. Dynare offers a user-friendly and intuitive way of describing these models. It is able to perform simulations of the model given a calibration of the model parameters and is also able to estimate these parameters given a dataset. Dynare is a free software, which means that it can be downloaded free of charge, that its source code is freely available, and that it can be used for both non-profit and for-profit purposes.Dynare; Numerical methods; Perturbation; Rational expectations
    • …
    corecore