10 research outputs found

    A Comparative Study of Prioritized Handoff Schemes with Guard Channels in Wireless Cellular Networks

    Get PDF
    Mobility management has always been the main challenge in most mobile systems. It involves the management of network radio channel resource capacity for the purpose of achieving optimum quality of service (QoS) standard. In this era of wireless Personal Communication Networks such as Global System for Mobile Communication (GSM), Wireless Asynchronous Transfer Mode (WATM), Universal Mobile Telecommunication System (UMTS), there is a continuous increase in demand for network capacity. In order to accommodate the increased demand for network capacity (radio resource) over the wireless medium, cell sizes are reduced. As a result of such reduction in cell sizes, handoffs occur more frequently, and thereby result in increased volume of handoff related signaling. Therefore, a handoff scheme that can handle the increased signaling load while sustaining the standard QoS parameters is required.This work presents a comparative analysis of four popular developed handoff schemes. New call blocking probability, forced termination probability and throughput are the QoS parameters employed in comparing the four schemes. The four schemes are:RCS-GC,MRCS-GC, NCBS-GC, and APS-GC. NCBS-GChas the leased new call blocking probability while APS-GC has the worst. In terms of forced termination probability, MRCS-GC has the best result, whileRCS-GChas the worst scheme.MRCS-GC delivers the highest number of packets per second while APS-GC delivers the least. These performance metrics are computed by using the analytical expressions developed for these metrics in the considered models in a Microsoft Excel spreadsheet environment.http://dx.doi.org/10.4314/njt.v34i3.2

    High Linearity Millimeter Wave Power Amplifiers with Novel Linearizer Techniques

    No full text
    Millimeter-wave communications have experienced phenomenal growth in recent years when limited frequency spectrum is occupied by the ever-developing communication services. The power amplifier, as the key component in the transmitter/receiver module of communication systems, affects performance of the whole system directly and receives much attention. For minimized distortion and optimum system performance, the non-constant en- velope modulation schemes used in communication systems have challenging requirements on linearity. As linearity is related to communication quality directly, several linearization techniques, such as predistortion and feedforward, are applied to power amplifier design. Predistortion method has the advantages over other techniques in relatively simple struc- ture and reasonable linearity improvement. But current predistortion circuits have quite limited performance improvement and relatively large insertion loss, which indicate the need for further research. In most of millimeter-wave amplifier design, great effort has been spent on output power or gain, while linearity is often ignored. As almost all the predistortion circuits operate at the RF frequencies, the linearized millimeter-wave com- munication circuit is still relatively immature and very challenging. This project is dedicated to solve the linearity problem faced by millimeter-wave power amplifier in communication systems, which lacks of e®ective techniques in this field. Linearity improvement with the predistortion method will be the key issue in this project and some original ideas for predistortion circuit design will be applied to millimeter-wave amplifiers. In this thesis, several predistortion circuits with novel structure were proposed, which provide a new approach for linearity improvement for millimeter-wave power am- plifier. A millimeter-wave power ampli¯er for LMDS applications built on GaAs pHEMT technology was developed to a high engineering standard, which works as the test bench for linearization. Actual operation and parasitic elements at tens of gigahertz have been taken into consideration during the design. Firstly, two novel predistorter structures based on the amplifier were proposed, one is based on an amplifier with a fixed bias circuit and the other is based on an amplifier with a nonlinear signal dependant bias circuit. These novel structures can improve the linearity while improving other metrics simultaneously, which can effectively solve the problem of insertion loss faced by the conventional structures. Besides this, an original predistortion circuit design methodology derived from frequency to signal amplitude transformation was proposed. Based on this methodology, several transfer functions were proposed and related predistortion circuits were built to linearize the power amplifier. As this methodology is quite different from the traditional approach, it can improve the linearity signifficantly while other metrics are affected slightly and has a broad prospect for application

    High Linearity Millimeter Wave Power Amplifiers with Novel Linearizer Techniques

    Get PDF
    Millimeter-wave communications have experienced phenomenal growth in recent years when limited frequency spectrum is occupied by the ever-developing communication services. The power amplifier, as the key component in the transmitter/receiver module of communication systems, affects performance of the whole system directly and receives much attention. For minimized distortion and optimum system performance, the non-constant en- velope modulation schemes used in communication systems have challenging requirements on linearity. As linearity is related to communication quality directly, several linearization techniques, such as predistortion and feedforward, are applied to power amplifier design. Predistortion method has the advantages over other techniques in relatively simple struc- ture and reasonable linearity improvement. But current predistortion circuits have quite limited performance improvement and relatively large insertion loss, which indicate the need for further research. In most of millimeter-wave amplifier design, great effort has been spent on output power or gain, while linearity is often ignored. As almost all the predistortion circuits operate at the RF frequencies, the linearized millimeter-wave com- munication circuit is still relatively immature and very challenging. This project is dedicated to solve the linearity problem faced by millimeter-wave power amplifier in communication systems, which lacks of e®ective techniques in this field. Linearity improvement with the predistortion method will be the key issue in this project and some original ideas for predistortion circuit design will be applied to millimeter-wave amplifiers. In this thesis, several predistortion circuits with novel structure were proposed, which provide a new approach for linearity improvement for millimeter-wave power am- plifier. A millimeter-wave power ampli¯er for LMDS applications built on GaAs pHEMT technology was developed to a high engineering standard, which works as the test bench for linearization. Actual operation and parasitic elements at tens of gigahertz have been taken into consideration during the design. Firstly, two novel predistorter structures based on the amplifier were proposed, one is based on an amplifier with a fixed bias circuit and the other is based on an amplifier with a nonlinear signal dependant bias circuit. These novel structures can improve the linearity while improving other metrics simultaneously, which can effectively solve the problem of insertion loss faced by the conventional structures. Besides this, an original predistortion circuit design methodology derived from frequency to signal amplitude transformation was proposed. Based on this methodology, several transfer functions were proposed and related predistortion circuits were built to linearize the power amplifier. As this methodology is quite different from the traditional approach, it can improve the linearity signifficantly while other metrics are affected slightly and has a broad prospect for application

    Nonlinear Characterization of Wideband Microwave Devices and Dispersive Effects in GaN HEMTs

    Get PDF
    Measurements play a key role in the development of microwave hardware as they allow engineers to test and verify the RF performance on a system, circuit, and component level. Since modern cellular standards employ complex modulation formats with wider signal bandwidths to cope with the growing demand of higher datarates, nonlinear characterization using wideband stimuli is becoming increasingly important. Furthermore, III-N semiconductor technologies such as gallium nitride (GaN) are to a larger extent utilized to enable higher performance in microwave circuits. However, GaN is highly frequency-dispersive due to trapping phenomena and thermal effects. This thesis deals with the development of nonlinear measurement instruments as well as characterization of dispersive effects in GaN high-electron-mobility transistors (HEMTs).A measurement setup for wideband, nonlinear characterization of microwave devices has been designed and verified. The setup allows for simultaneous acquisition of low-frequency and radio-frequency signals from DC up to 4~GHz through the use of wideband signal generators and measurement receivers. This enables measurement scenarios such as multi-band load-pull and large-signal characterization of IQ-mixers, which can give useful insight into how to optimize the performance in a RF transmitter.Electrothermal characterization of GaN devices has been carried out using conventional measurement methods such as pulsed I-V, and it is shown that trapping phenomena and thermal effects due to self-heating or mutual coupling are challenging to separate. Multiple methods must be utilized to fully characterize both the large-signal and small-signal impact on device performance. A new characterization method has been developed, for extraction of thermal transfer functions between mutually coupled devices on e.g. a semiconductor wafer. The method does not require any DC-bias on the measured devices, which can potentially reduce the influence of trapping during characterization of thermal properties in materials

    Bandwidth scaling behavior in wireless systems : theory, experimentation, and performance analysis

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 167-174).The need for ubiquitous wireless services has prompted the exploration of using increasingly larger transmission bandwidths often in environments with harsh propagation conditions. However, present analyses do not capture the behavior of systems in these channels as the bandwidth changes. This thesis: describes the development of an automated measurement apparatus capable of characterizing wideband channels up to 16 GHz; formulates a framework for evaluating the performance of wireless systems in realistic propagation environments; and applies this framework to sets of channel realizations collected during a comprehensive measurement campaign. In particular, the symbol error probability of realistic wideband subset diversity (SSD) systems, as well as improved lower bounds on time-of-arrival (TOA) estimation are derived and evaluated using experimental data at a variety of bandwidths. These results provide insights into how the performance of wireless systems scales as a function of bandwidth. Experimental data is used to quantify the behavior of channel resolvability as a function of bandwidth. The results show that there are significant differences in the amount of energy captured by a wideband SSD combiner under different propagation conditions. In particular, changes in the number of combined paths affect system performance more significantly in non-line-of-sight conditions than in line-of-sight conditions. Results also indicate that, for a fixed number of combined paths, lower bandwidths may provide better performance because a larger portion of the available energy is captured at those bandwidths. The expressions for lower bounds on TOA estimation, developed based on the Ziv-Zakai bound (ZZB), are able to account for the a priori information about the TOA as well as statistical information regarding the multipath phenomena. The ZZB, evaluated using measured channel realizations, shows the presence of an ambiguity region for moderate signal-to-noise ratios (SNRs). It is shown that in a variety of propagation conditions, this ambiguity region diminishes as bandwidth increases. Results indicate that decreases in the root mean square error for TOA estimation were significant for bandwidths up to approximately 8 GHz for SNRs in this region.by Wesley M. Gifford.Ph.D

    Quality of service support for multimedia applications in mobile ad hoc networks

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Energy processing circuits for low-power applications

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 199-205).Portable electronics have fueled the rich emergence of new applications including multi-media handsets, ubiquitous smart sensors and actuators, and wearable or implantable biomedical devices. New ultra-low power circuit techniques are constantly being proposed to further improve the energy efficiency of electronic circuits. A critical part of these energy conscious systems are the energy processing and power delivery circuits that interface with the energy sources and provide conditioned voltage and current levels to the load circuits. These energy processing circuits must maintain high efficiency and reduce component count for the final solution to be attractive from an energy, size and cost perspective. The first part of this work focuses on the development of on-chip voltage scalable switched capacitor DC-DC converters in digital CMOS processes. The converters are designed to deliver regulated scalable load voltages from 0.3V up to the battery voltage of 1.2V for ultra-dynamic voltage scaled systems. The efficiency limiting mechanisms of these on-chip DC-DC converters are analyzed and digital circuit techniques are proposed to tackle these losses. Measurement results from 3 test-chips implemented in 0.18pm and 65nm CMOS processes will be provided. The converters are able to maintain >75% efficiency over a wide range of load voltage and power levels while delivering load currents up to 8mA. An embedded switched capacitor DC-DC converter that acts as the power delivery unit in a 65nm subthreshold microcontroller system will be described. The remainder of the thesis deals with energy management circuits for battery-less systems. Harvesting ambient vibrational, light or thermal energy holds much promise in realizing the goal of a self-powered system. The second part of the thesis identifies problems with commonly used interface circuits for piezoelectric vibration energy harvesters and proposes a rectifier design that gives more than 4X improvement in output power extracted from the piezoelectric energy harvester. The rectifier designs are demonstrated with the help of a test-chip built in a 0.35pm CMOS process. The inductor used within the rectifier is shared efficiently with a multitude of DC-DC converters in the energy harvesting chip leading to a compact, cost-efficient solution. The DC-DC converters designed as part of a complete power management solution achieve efficiencies of greater than 85% even in the micro-watt power levels output by the harvester. The final part of the thesis deals with thermal energy harvesters to extract electrical power from body heat. Thermal harvesters in body-worn applications output ultra-low voltages of the order of 10's of milli-volts. This presents extreme challenges to CMOS circuits that are powered by the harvester. The final part of the thesis presents a new startup technique that allows CMOS circuits to interface directly with and extract power out of thermoelectric generators without the need for an external battery, clock or reference generators. The mechanically assisted startup circuit is demonstrated with the help of a test-chip built in a 0.35pm CMOS process and can work from as low as 35mV. This enables load circuits like processors and radios to operate directly of the thermoelectric generator without the aid of a battery. A complete power management solution is provided that can extract electrical power efficiently from the harvester independent of the input voltage conditions. With the help of closed-loop control techniques, the energy processing circuit is able to maintain efficiency over a wide range of load voltage and process variations.by Yogesh Kumar Ramadass.Ph.D

    Life Sciences Program Tasks and Bibliography

    Get PDF
    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1995. Additionally, this inaugural edition of the Task Book includes information for FY 1994 programs. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive Internet web pag

    Concepts and Approaches for Mars Exploration

    Get PDF
    Abstracts describe missions, mission elements or experiments for consideration in the 2005-2020 time frame. Also the technologies and the support necessary to achieve the results are discussed.NASA Headquarters; Lunar and Planetary Institutehosted by Lunar and Planetary Institute ; sponsored by NASA Headquarters, Lunar and Planetary Institute ; convener Scott Hubbard

    Ratioed power and rate control for CDMA wireless networks 

    No full text
    [[abstract]]We propose in this paper the ratioed power and rate control (RPRC) algorithm to satisfy the requirements of both the data rate and the signal quality. During the execution of the RPRC algorithm, only the representative user in each cell adjusts its power level according to certain distributed power control algorithm, and the ratio of the power level for the non-representative user to that for the representative user is kept constant. When the RPRC algorithm is finished, the power levels for all users remain unchanged and the transmission rate is determined by the available rate. We show that the RPRC algorithm can be used for allocating the bandwidth of each cell and achieving the required rate of each user. Furthermore, simulation results reveal that the RPRC algorithm results in larger throughput and finds a feasible power set faster than the other algorithm. Copyright (C) 2008 John Wiley & Sons, Ltd.[[note]]SC
    corecore