402 research outputs found

    Land Classification of South-central Iowa from Computer Enhanced Images

    Get PDF
    The author has identified the following significant results. Two enhanced false color negatives from multispectral scanner scenes, dated 15 April 1974 and 29 August 1972, were printed at a scale of 1:125,000 to form the basis for land use interpretations in the Wapello County, Iowa test site. The use of geomorphic principles proved valuable in the interpretation of the April scene to form valuable generalizations for planning purposes on soil associations, topography, alluvial valleys, and agricultural land use. The August scene was superior in providing information on urban extent, transportation networks, forest cover, and water bodies

    A Learning Health Sciences Approach to Understanding Clinical Documentation in Pediatric Rehabilitation Settings

    Full text link
    The work presented in this dissertation provides an analysis of clinical documentation that challenges the concepts and thinking surrounding missingness of data from clinical settings and the factors that influence why data are missing. It also foregrounds the critical role of clinical documentation as infrastructure for creating learning health systems (LHS) for pediatric rehabilitation settings. Although completeness of discrete data is limited, the results presented do not reflect the quality of care or the extent of unstructured data that providers document in other locations of the electronic health record (EHR) interface. While some may view imputation and natural language processing as means to address missingness of clinical data, these practices carry biases in their interpretations and issues of validity in results. The factors that influence missingness of discrete clinical data are rooted not just in technical structures, but larger professional, system level and unobservable phenomena that shape provider practices of clinical documentation. This work has implications for how we view clinical documentation as critical infrastructure for LHS, future studies of data quality and health outcomes research, and EHR design and implementation. The overall research questions for this dissertation are: 1) To what extent can data networks be leveraged to build classifiers of patient functional performance and physical disability? 2) How can discrete clinical data on gross motor function be used to draw conclusions about clinical documentation practices in the EHR for cerebral palsy? 3) Why does missingness of discrete data in the EHR occur? To address these questions, a three-pronged approach is used to examine data completeness and the factors that influence missingness of discrete clinical data in an exemplar pediatric data learning network will be used. As a use-case, evaluation of EHR data completeness of gross motor function related data, populated by providers from 2015-2019 for children with cerebral palsy (CP), will be completed. Mixed methods research strategies will be used to achieve the dissertation objectives, including developing an expert-informed and standards-based phenotype model of gross motor function data as a task-based mechanism, conducting quantitative descriptive analyses of completeness of discrete data in the EHR, and performing qualitative thematic analyses to elicit and interpret the latent concepts that contribute to missingness of discrete data in the EHR. The clinical data for this dissertation are sourced from the Shriners Hospitals for Children (SHC) Health Outcomes Network (SHOnet), while qualitative data were collected through interviews and field observations of clinical providers across three care sites in the SHC system.PHDHlth Infrastr & Lrng Systs PhDUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162994/1/njkoscie_1.pd

    Gamut extension algorithm development and evaluation for the mapping of standard image content to wide-gamut displays

    Get PDF
    Wide-gamut display technology has provided an excellent opportunity to produce visually pleasing images, more so than in the past. However, through several studies, including Laird and Heynderick, 2008, it was shown that linearly mapping the standard sRGB content to the gamut boundary of a given wide-gamut display may not result in optimal results. Therefore, several algorithms were developed and evaluated for observer preference, including both linear and sigmoidal expansion algorithms, in an effort to define a single, versatile gamut expansion algorithm (GEA) that can be applied to current display technology and produce the most preferable images for observers. The outcome provided preference results from two displays, both of which resulted in large scene dependencies. However, the sigmoidal GEAs (SGEA) were competitive with the linear GEAs (LGEA), and in many cases, resulted in more pleasing reproductions. The SGEAs provide an excellent baseline, in which, with minor improvements, could be key to producing more impressive images on a wide-gamut display

    Investigation of environmental indices from the Earth Resources Technology Satellite

    Get PDF
    The author has identified the following significant results. Land use change, water quality, and air quality indices have been calculated from analysis of ERTS-1 multispectral scanning imagery and computer compatible tapes. Specifications have been developed and discussed for an ERTS-1 environmental monitoring system which help to serve the information needs of environmental managers at the Federal, state, regional, and local level. General conclusions of the investigation are that ERTS-1 data is very useful in land use mapping and updating to 10-15 categories, and can provide an overall measure of air and water turbidity; however, more and better ground truth and possibly additional spacecraft sensors will be required if specific air and water pollutants are to be quantified from satellite data

    Music models aberrant rule decoding and reward valuation in dementia.

    Get PDF
    Aberrant rule- and reward-based processes underpin abnormalities of socio-emotional behaviour in major dementias. However, these processes remain poorly characterized. Here we used music to probe rule decoding and reward valuation in patients with frontotemporal dementia (FTD) syndromes and Alzheimer's disease (AD) relative to healthy age-matched individuals. We created short melodies that were either harmonically resolved ('finished') or unresolved ('unfinished'); the task was to classify each melody as finished or unfinished (rule processing) and rate its subjective pleasantness (reward valuation). Results were adjusted for elementary pitch and executive processing; neuroanatomical correlates were assessed using voxel-based morphometry. Relative to healthy older controls, patients with behavioural variant FTD showed impairments of both musical rule decoding and reward valuation, while patients with semantic dementia showed impaired reward valuation but intact rule decoding, patients with AD showed impaired rule decoding but intact reward valuation and patients with progressive non-fluent aphasia performed comparably to healthy controls. Grey matter associations with task performance were identified in anterior temporal, medial and lateral orbitofrontal cortices, previously implicated in computing diverse biological and non-biological rules and rewards. The processing of musical rules and reward distils cognitive and neuroanatomical mechanisms relevant to complex socio-emotional dysfunction in major dementias

    Music models aberrant rule decoding and reward valuation in dementia.

    Get PDF
    Aberrant rule- and reward-based processes underpin abnormalities of socio-emotional behaviour in major dementias. However, these processes remain poorly characterized. Here we used music to probe rule decoding and reward valuation in patients with frontotemporal dementia (FTD) syndromes and Alzheimer's disease (AD) relative to healthy age-matched individuals. We created short melodies that were either harmonically resolved ('finished') or unresolved ('unfinished'); the task was to classify each melody as finished or unfinished (rule processing) and rate its subjective pleasantness (reward valuation). Results were adjusted for elementary pitch and executive processing; neuroanatomical correlates were assessed using voxel-based morphometry. Relative to healthy older controls, patients with behavioural variant FTD showed impairments of both musical rule decoding and reward valuation, while patients with semantic dementia showed impaired reward valuation but intact rule decoding, patients with AD showed impaired rule decoding but intact reward valuation and patients with progressive non-fluent aphasia performed comparably to healthy controls. Grey matter associations with task performance were identified in anterior temporal, medial and lateral orbitofrontal cortices, previously implicated in computing diverse biological and non-biological rules and rewards. The processing of musical rules and reward distils cognitive and neuroanatomical mechanisms relevant to complex socio-emotional dysfunction in major dementias

    Evaluation of the color image and video processing chain and visual quality management for consumer systems

    Get PDF
    With the advent of novel digital display technologies, color processing is increasingly becoming a key aspect in consumer video applications. Today’s state-of-the-art displays require sophisticated color and image reproduction techniques in order to achieve larger screen size, higher luminance and higher resolution than ever before. However, from color science perspective, there are clearly opportunities for improvement in the color reproduction capabilities of various emerging and conventional display technologies. This research seeks to identify potential areas for improvement in color processing in a video processing chain. As part of this research, various processes involved in a typical video processing chain in consumer video applications were reviewed. Several published color and contrast enhancement algorithms were evaluated, and a novel algorithm was developed to enhance color and contrast in images and videos in an effective and coordinated manner. Further, a psychophysical technique was developed and implemented for performing visual evaluation of color image and consumer video quality. Based on the performance analysis and visual experiments involving various algorithms, guidelines were proposed for the development of an effective color and contrast enhancement method for images and video applications. It is hoped that the knowledge gained from this research will help build a better understanding of color processing and color quality management methods in consumer video

    Scene-Dependency of Spatial Image Quality Metrics

    Get PDF
    This thesis is concerned with the measurement of spatial imaging performance and the modelling of spatial image quality in digital capturing systems. Spatial imaging performance and image quality relate to the objective and subjective reproduction of luminance contrast signals by the system, respectively; they are critical to overall perceived image quality. The Modulation Transfer Function (MTF) and Noise Power Spectrum (NPS) describe the signal (contrast) transfer and noise characteristics of a system, respectively, with respect to spatial frequency. They are both, strictly speaking, only applicable to linear systems since they are founded upon linear system theory. Many contemporary capture systems use adaptive image signal processing, such as denoising and sharpening, to optimise output image quality. These non-linear processes change their behaviour according to characteristics of the input signal (i.e. the scene being captured). This behaviour renders system performance “scene-dependent” and difficult to measure accurately. The MTF and NPS are traditionally measured from test charts containing suitable predefined signals (e.g. edges, sinusoidal exposures, noise or uniform luminance patches). These signals trigger adaptive processes at uncharacteristic levels since they are unrepresentative of natural scene content. Thus, for systems using adaptive processes, the resultant MTFs and NPSs are not representative of performance “in the field” (i.e. capturing real scenes). Spatial image quality metrics for capturing systems aim to predict the relationship between MTF and NPS measurements and subjective ratings of image quality. They cascade both measures with contrast sensitivity functions that describe human visual sensitivity with respect to spatial frequency. The most recent metrics designed for adaptive systems use MTFs measured using the dead leaves test chart that is more representative of natural scene content than the abovementioned test charts. This marks a step toward modelling image quality with respect to real scene signals. This thesis presents novel scene-and-process-dependent MTFs (SPD-MTF) and NPSs (SPDNPS). They are measured from imaged pictorial scene (or dead leaves target) signals to account for system scene-dependency. Further, a number of spatial image quality metrics are revised to account for capture system and visual scene-dependency. Their MTF and NPS parameters were substituted for SPD-MTFs and SPD-NPSs. Likewise, their standard visual functions were substituted for contextual detection (cCSF) or discrimination (cVPF) functions. In addition, two novel spatial image quality metrics are presented (the log Noise Equivalent Quanta (NEQ) and Visual log NEQ) that implement SPD-MTFs and SPD-NPSs. The metrics, SPD-MTFs and SPD-NPSs were validated by analysing measurements from simulated image capture pipelines that applied either linear or adaptive image signal processing. The SPD-NPS measures displayed little evidence of measurement error, and the metrics performed most accurately when they used SPD-NPSs measured from images of scenes. The benefit of deriving SPD-MTFs from images of scenes was traded-off, however, against measurement bias. Most metrics performed most accurately with SPD-MTFs derived from dead leaves signals. Implementing the cCSF or cVPF did not increase metric accuracy. The log NEQ and Visual log NEQ metrics proposed in this thesis were highly competitive, outperforming metrics of the same genre. They were also more consistent than the IEEE P1858 Camera Phone Image Quality (CPIQ) metric when their input parameters were modified. The advantages and limitations of all performance measures and metrics were discussed, as well as their practical implementation and relevant applications

    Results from the National Aeronautics and Space Administration remote sensing experiments in the New York Bight, 7-17 April 1975

    Get PDF
    A cooperative operation was conducted in the New York Bight to evaluate the role of remote sensing technology to monitor ocean dumping. Six NASA remote sensing experiments were flown on the C-54, U-2, and C-130 NASA aircraft, while NOAA obtained concurrent sea truth information using helicopters and surface platforms. The experiments included: (1) a Radiometer/Scatterometer (RADSCAT), (2) an Ocean Color Scanner (OCS), (3) a Multichannel Ocean Color Sensor (MOCS), (4) four Hasselblad cameras, (5) an Ebert spectrometer; and (6) a Reconafax IV infrared scanner and a Precision Radiation Thermometer (PRT-5). The results of these experiments relative to the use of remote sensors to detect, quantify, and determine the dispersion of pollutants dumped into the New York Bight are presented
    corecore