14,495 research outputs found

    Learning recommender systems from biased user interactions

    Get PDF
    Recommender systems have been widely deployed to help users quickly find what they need from a collection of items. Predominant recommendation methods rely on supervised learning models to predict user ratings on items or the probabilities of users interacting with items. In addition, reinforcement learning models are crucial in improving long-term user engagement within recommender systems. In practice, both of these recommendation methods are commonly trained on logged user interactions and, therefore, subject to bias present in logged user interactions. This thesis concerns complex forms of bias in real-world user behaviors and aims to mitigate the effect of bias on reinforcement learning-based recommendation methods. The first part of the thesis consists of two research chapters, each dedicated to tackling a specific form of bias: dynamic selection bias and multifactorial bias. To mitigate the effect of dynamic selection bias and multifactorial bias, we propose a bias propensity estimation method for each. By incorporating the results from the bias propensity estimation methods, the widely used inverse propensity scoring-based debiasing method can be extended to correct for the corresponding bias. The second part of the thesis consists of two chapters that concern the effect of bias on reinforcement learning-based recommendation methods. Its first chapter focuses on mitigating the effect of bias on simulators, which enables the learning and evaluation of reinforcement learning-based recommendation methods. Its second chapter further explores different state encoders for reinforcement learning-based recommendation methods when learning and evaluating with the proposed debiased simulator

    It Is Different When Items Are Older: Debiasing Recommendations When Selection Bias and User Preferences Are Dynamic

    Get PDF
    User interactions with recommender systems (RSs) are affected by user selection bias, e.g., users are more likely to rate popular items (popularity bias) or items that they expect to enjoy beforehand (positivity bias). Methods exist for mitigating the effects of selection bias in user ratings on the evaluation and optimization of RSs. However, these methods treat selection bias as static, despite the fact that the popularity of an item may change drastically over time and the fact that user preferences may also change over time. We focus on the age of an item and its effect on selection bias and user preferences. Our experimental analysis reveals that the rating behavior of users on the MovieLens dataset is better captured by methods that consider effects from the age of item on bias and preferences. We theoretically show that in a dynamic scenario in which both the selection bias and user preferences are dynamic, existing debiasing methods are no longer unbiased. To address this limitation, we introduce DebiAsing in the dyNamiC scEnaRio (DANCER), a novel debiasing method that extends the inverse propensity scoring debiasing method to account for dynamic selection bias and user preferences. Our experimental results indicate that DANCER improves rating prediction performance compared to debiasing methods that incorrectly assume that selection bias is static in a dynamic scenario. To the best of our knowledge, DANCER is the first debiasing method that accounts for dynamic selection bias and user preferences in RSs.Comment: WSDM 202

    New debiasing strategies in collaborative filtering recommender systems: modeling user conformity, multiple biases, and causality.

    Get PDF
    Recommender Systems are widely used to personalize the user experience in a diverse set of online applications ranging from e-commerce and education to social media and online entertainment. These State of the Art AI systems can suffer from several biases that may occur at different stages of the recommendation life-cycle. For instance, using biased data to train recommendation models may lead to several issues, such as the discrepancy between online and offline evaluation, decreasing the recommendation performance, and hurting the user experience. Bias can occur during the data collection stage where the data inherits the user-item interaction biases, such as selection and exposure bias. Bias can also occur in the training stage, where popular items tend to be recommended much more frequently given that they received more interactions to start with. The closed feedback loop nature of online recommender systems will further amplify the latter biases as well. In this dissertation, we study the bias in the context of Collaborative Filtering recommender system, and propose a new Popularity Correction Matrix Factorization (PCMF) that aims to improve the recommender system performance as well as decrease popularity bias and increase the diversity of items in the recommendation lists. PCMF mitigates popularity bias by disentangling relevance and conformity and by learning a user-personalized bias vector to capture the users\u27 individual conformity levels along a full spectrum of conformity bias. One shortcoming of the proposed PCMF debiasing approach, is its assumption that the recommender system is affected by only popularity bias. However in the real word, different types of bias do occur simultaneously and interact with one another. We therefore relax the latter assumption and propose a multi-pronged approach that can account for two biases simultaneously, namely popularity and exposure bias. our experimental results show that accounting for multiple biases does improve the results in terms of providing more accurate and less biased results. Finally, we propose a novel two-stage debiasing approach, inspired from the proximal causal inference framework. Unlike the existing causal IPS approach that corrects for observed confounders, our proposed approach corrects for both observed and potential unobserved confounders. The approach relies on a pair of negative control variables to adjust for the bias in the potential ratings. Our proposed approach outperforms state of the art causal approaches, proving that accounting for unobserved confounders can improve the recommendation system\u27s performance
    • …
    corecore