743 research outputs found

    Scheduling of Multicast and Unicast Services under Limited Feedback by using Rateless Codes

    Full text link
    Many opportunistic scheduling techniques are impractical because they require accurate channel state information (CSI) at the transmitter. In this paper, we investigate the scheduling of unicast and multicast services in a downlink network with a very limited amount of feedback information. Specifically, unicast users send imperfect (or no) CSI and infrequent acknowledgements (ACKs) to a base station, and multicast users only report infrequent ACKs to avoid feedback implosion. We consider the use of physical-layer rateless codes, which not only combats channel uncertainty, but also reduces the overhead of ACK feedback. A joint scheduling and power allocation scheme is developed to realize multiuser diversity gain for unicast service and multicast gain for multicast service. We prove that our scheme achieves a near-optimal throughput region. Our simulation results show that our scheme significantly improves the network throughput over schemes employing fixed-rate codes or using only unicast communications

    Reconfigurable rateless codes

    No full text
    We propose novel reconfigurable rateless codes, that are capable of not only varying the block length but also adaptively modify their encoding strategy by incrementally adjusting their degree distribution according to the prevalent channel conditions without the availability of the channel state information at the transmitter. In particular, we characterize a reconfigurable ratelesscode designed for the transmission of 9,500 information bits that achieves a performance, which is approximately 1 dB away from the discrete-input continuous-output memoryless channel’s (DCMC) capacity over a diverse range of channel signal-to-noise (SNR) ratios

    Reconfigurable rateless codes

    No full text
    We propose novel reconfigurable rateless codes, that are capable of not only varying the block length but also adaptively modify their encoding strategy by incrementally adjusting their degree distribution according to the prevalent channel conditions without the availability of the channel state information at the transmitter. In particular, we characterize a reconfigurable ratelesscode designed for the transmission of 9,500 information bits that achieves a performance, which is approximately 1 dB away from the discrete-input continuous-output memoryless channel’s (DCMC) capacity over a diverse range of channel signal-to-noise (SNR) ratios

    Multi path multi priority (MPMP) scalable video streaming for mobile applications

    Get PDF

    Myths and Realities of Rateless Coding

    No full text
    Fixed-rate and rateless channel codes are generally treated separately in the related research literature and so, a novice in the field inevitably gets the impression that these channel codes are unrelated. By contrast, in this treatise, we endeavor to further develop a link between the traditional fixed-rate codes and the recently developed rateless codes by delving into their underlying attributes. This joint treatment is beneficial for two principal reasons. First, it facilitates the task of researchers and practitioners, who might be familiar with fixed-rate codes and would like to jump-start their understanding of the recently developed concepts in the rateless reality. Second, it provides grounds for extending the use of the well-understood code design tools — originally contrived for fixed-rate codes — to the realm of rateless codes. Indeed, these versatile tools proved to be vital in the design of diverse fixed-rate-coded communications systems, and thus our hope is that they will further elucidate the associated performance ramifications of the rateless coded schemes

    A super-nyquist architecture for reliable underwater acoustic communication

    Get PDF
    A natural joint physical and link layer transmission architecture is developed for communication over underwater acoustic channels, based on the concept of super-Nyquist (SNQ) signaling. In such systems, the signaling rate is chosen significantly higher than the Nyquist rate of the system. We show that such signaling can be used in conjunction with good "off- the-shelf" base codes, simple linear redundancy, and minimum mean-square error decision feedback equalization (MMSE-DFE) to produce highly efficient, low complexity rateless (i.e., "fountain") codes for the severe time-varying intersymbol-interference channels typical of this application. We show that not only can SNQ rateless codes approach capacity arbitrarily closely, but even particularly simple SNQ-based rateless codes require the transmission of dramatically fewer packets than does traditional ARQ with Chase combining.United States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant N00014-07-1-0738)United States. Air Force Office of Scientific Research (Grant FA9550-11-1-0183)Israel Science Foundation (Grant 1557/10

    Raptor codes for infrastructure-to-vehicular broadcast services

    Get PDF
    corecore