284 research outputs found

    Rateless Space-Time Block Codes for 5G Wireless Communication Systems

    Get PDF
    This chapter presents a rateless space-time block code (RSTBC) for massive multiple-input multiple-output (MIMO) wireless communication systems. We discuss the principles of rateless coding compared to the fixed-rate channel codes. A literature review of rateless codes (RCs) is also addressed. Furthermore, the chapter illustrates the basis of RSTBC deployments in massive MIMO transmissions over lossy wireless channels. In such channels, data may be lost or are not decodable at the receiver end due to a variety of factors such as channel losses or pilot contamination. Massive MIMO is a breakthrough wireless transmission technique proposed for future wireless standards due to its spectrum and energy efficiencies. We show that RSTBC guarantees the reliability of the system in such highly lossy channels. Moreover, pilot contamination (PC) constitutes a particularly significant impairment in reciprocity-based multi-cell systems. PC results from the non-orthogonality of the pilot sequences in different cells. In this chapter, RSTBC is also employed in the downlink transmission of a multi-cell massive MIMO system to mitigate the effects of signal-to-interference-and-noise ratio (SINR) degradation resulting from PC. We conclude that RSTBC can effectively mitigate such interference. Hence, RSTBC is a strong candidate for the upcoming 5G wireless communication systems

    Precoded Integer-Forcing Universally Achieves the MIMO Capacity to Within a Constant Gap

    Full text link
    An open-loop single-user multiple-input multiple-output communication scheme is considered where a transmitter, equipped with multiple antennas, encodes the data into independent streams all taken from the same linear code. The coded streams are then linearly precoded using the encoding matrix of a perfect linear dispersion space-time code. At the receiver side, integer-forcing equalization is applied, followed by standard single-stream decoding. It is shown that this communication architecture achieves the capacity of any Gaussian multiple-input multiple-output channel up to a gap that depends only on the number of transmit antennas.Comment: to appear in the IEEE Transactions on Information Theor

    Rateless Coding for Gaussian Channels

    Get PDF
    A rateless code-i.e., a rate-compatible family of codes-has the property that codewords of the higher rate codes are prefixes of those of the lower rate ones. A perfect family of such codes is one in which each of the codes in the family is capacity-achieving. We show by construction that perfect rateless codes with low-complexity decoding algorithms exist for additive white Gaussian noise channels. Our construction involves the use of layered encoding and successive decoding, together with repetition using time-varying layer weights. As an illustration of our framework, we design a practical three-rate code family. We further construct rich sets of near-perfect rateless codes within our architecture that require either significantly fewer layers or lower complexity than their perfect counterparts. Variations of the basic construction are also developed, including one for time-varying channels in which there is no a priori stochastic model.Comment: 18 page

    AirSync: Enabling Distributed Multiuser MIMO with Full Spatial Multiplexing

    Full text link
    The enormous success of advanced wireless devices is pushing the demand for higher wireless data rates. Denser spectrum reuse through the deployment of more access points per square mile has the potential to successfully meet the increasing demand for more bandwidth. In theory, the best approach to density increase is via distributed multiuser MIMO, where several access points are connected to a central server and operate as a large distributed multi-antenna access point, ensuring that all transmitted signal power serves the purpose of data transmission, rather than creating "interference." In practice, while enterprise networks offer a natural setup in which distributed MIMO might be possible, there are serious implementation difficulties, the primary one being the need to eliminate phase and timing offsets between the jointly coordinated access points. In this paper we propose AirSync, a novel scheme which provides not only time but also phase synchronization, thus enabling distributed MIMO with full spatial multiplexing gains. AirSync locks the phase of all access points using a common reference broadcasted over the air in conjunction with a Kalman filter which closely tracks the phase drift. We have implemented AirSync as a digital circuit in the FPGA of the WARP radio platform. Our experimental testbed, comprised of two access points and two clients, shows that AirSync is able to achieve phase synchronization within a few degrees, and allows the system to nearly achieve the theoretical optimal multiplexing gain. We also discuss MAC and higher layer aspects of a practical deployment. To the best of our knowledge, AirSync offers the first ever realization of the full multiuser MIMO gain, namely the ability to increase the number of wireless clients linearly with the number of jointly coordinated access points, without reducing the per client rate.Comment: Submitted to Transactions on Networkin

    Reconfigurable rateless codes

    No full text
    We propose novel reconfigurable rateless codes, that are capable of not only varying the block length but also adaptively modify their encoding strategy by incrementally adjusting their degree distribution according to the prevalent channel conditions without the availability of the channel state information at the transmitter. In particular, we characterize a reconfigurable ratelesscode designed for the transmission of 9,500 information bits that achieves a performance, which is approximately 1 dB away from the discrete-input continuous-output memoryless channel’s (DCMC) capacity over a diverse range of channel signal-to-noise (SNR) ratios

    Decode-and-Forward Relaying via Standard AWGN Coding and Decoding

    Get PDF
    A framework is developed for decode-and-forward based relaying using standard coding and decoding that are good for the single-input single-output (SISO) additive white Gaussian noise channel. The framework is applicable to various scenarios and demonstrated for several important cases. Each of these scenarios is transformed into an equivalent Gaussian multiple-input multiple-output (MIMO) common-message broadcast problem, which proves useful even when all links are SISO ones. Over the effective MIMO broadcast channel, a recently developed Gaussian MIMO common-message broadcast scheme is applied. This scheme transforms the MIMO links into a set of parallel SISO channels with no loss of mutual information, using linear pre- and post-processing combined with successive decoding. Over these resulting SISO channels, “off-the-shelf” scalar codes may be used

    Myths and Realities of Rateless Coding

    No full text
    Fixed-rate and rateless channel codes are generally treated separately in the related research literature and so, a novice in the field inevitably gets the impression that these channel codes are unrelated. By contrast, in this treatise, we endeavor to further develop a link between the traditional fixed-rate codes and the recently developed rateless codes by delving into their underlying attributes. This joint treatment is beneficial for two principal reasons. First, it facilitates the task of researchers and practitioners, who might be familiar with fixed-rate codes and would like to jump-start their understanding of the recently developed concepts in the rateless reality. Second, it provides grounds for extending the use of the well-understood code design tools — originally contrived for fixed-rate codes — to the realm of rateless codes. Indeed, these versatile tools proved to be vital in the design of diverse fixed-rate-coded communications systems, and thus our hope is that they will further elucidate the associated performance ramifications of the rateless coded schemes

    Joint Unitary Triangularization for Gaussian Multi-User MIMO Networks

    Full text link
    The problem of transmitting a common message to multiple users over the Gaussian multiple-input multiple-output broadcast channel is considered, where each user is equipped with an arbitrary number of antennas. A closed-loop scenario is assumed, for which a practical capacity-approaching scheme is developed. By applying judiciously chosen unitary operations at the transmit and receive nodes, the channel matrices are triangularized so that the resulting matrices have equal diagonals, up to a possible multiplicative scalar factor. This, along with the utilization of successive interference cancellation, reduces the coding and decoding tasks to those of coding and decoding over the single-antenna additive white Gaussian noise channel. Over the resulting effective channel, any off-the-shelf code may be used. For the two-user case, it was recently shown that such joint unitary triangularization is always possible. In this paper, it is shown that for more than two users, it is necessary to carry out the unitary linear processing jointly over multiple channel uses, i.e., space-time processing is employed. It is further shown that exact triangularization, where all resulting diagonals are equal, is still not always possible, and appropriate conditions for the existence of such are established for certain cases. When exact triangularization is not possible, an asymptotic construction is proposed, that achieves the desired property of equal diagonals up to edge effects that can be made arbitrarily small, at the price of processing a sufficiently large number of channel uses together.Comment: Extended version of published paper in IEEE Transactions on Information Theory, vol. 61, no. 5, pp. 2662-2692, May 201
    corecore