7,804 research outputs found

    Rate-energy-accuracy optimization of convolutional architectures for face recognition

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Face recognition systems based on Convolutional Neural Networks (CNNs) or convolutional architectures currently represent the state of the art, achieving an accuracy comparable to that of humans. Nonetheless, there are two issues that might hinder their adoption on distributed battery-operated devices (e.g., visual sensor nodes, smartphones, and wearable devices). First, convolutional architectures are usually computationally demanding, especially when the depth of the network is increased to maximize accuracy. Second, transmitting the output features produced by a CNN might require a bitrate higher than the one needed for coding the input image. Therefore, in this paper we address the problem of optimizing the energy-rate-accuracy characteristics of a convolutional architecture for face recognition. We carefully profile a CNN implementation on a Raspberry Pi device and optimize the structure of the neural network, achieving a 17-fold speedup without significantly affecting recognition accuracy. Moreover, we propose a coding architecture custom-tailored to features extracted by such model. (C) 2015 Elsevier Inc. All rights reserved.Face recognition systems based on Convolutional Neural Networks (CNNs) or convolutional architectures currently represent the state of the art, achieving an accuracy comparable to that of humans. Nonetheless, there are two issues that might hinder their a36142148CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)sem informação2013/11359-0sem informaçã

    OL\'E: Orthogonal Low-rank Embedding, A Plug and Play Geometric Loss for Deep Learning

    Full text link
    Deep neural networks trained using a softmax layer at the top and the cross-entropy loss are ubiquitous tools for image classification. Yet, this does not naturally enforce intra-class similarity nor inter-class margin of the learned deep representations. To simultaneously achieve these two goals, different solutions have been proposed in the literature, such as the pairwise or triplet losses. However, such solutions carry the extra task of selecting pairs or triplets, and the extra computational burden of computing and learning for many combinations of them. In this paper, we propose a plug-and-play loss term for deep networks that explicitly reduces intra-class variance and enforces inter-class margin simultaneously, in a simple and elegant geometric manner. For each class, the deep features are collapsed into a learned linear subspace, or union of them, and inter-class subspaces are pushed to be as orthogonal as possible. Our proposed Orthogonal Low-rank Embedding (OL\'E) does not require carefully crafting pairs or triplets of samples for training, and works standalone as a classification loss, being the first reported deep metric learning framework of its kind. Because of the improved margin between features of different classes, the resulting deep networks generalize better, are more discriminative, and more robust. We demonstrate improved classification performance in general object recognition, plugging the proposed loss term into existing off-the-shelf architectures. In particular, we show the advantage of the proposed loss in the small data/model scenario, and we significantly advance the state-of-the-art on the Stanford STL-10 benchmark

    Sequence Mining and Pattern Analysis in Drilling Reports with Deep Natural Language Processing

    Full text link
    Drilling activities in the oil and gas industry have been reported over decades for thousands of wells on a daily basis, yet the analysis of this text at large-scale for information retrieval, sequence mining, and pattern analysis is very challenging. Drilling reports contain interpretations written by drillers from noting measurements in downhole sensors and surface equipment, and can be used for operation optimization and accident mitigation. In this initial work, a methodology is proposed for automatic classification of sentences written in drilling reports into three relevant labels (EVENT, SYMPTOM and ACTION) for hundreds of wells in an actual field. Some of the main challenges in the text corpus were overcome, which include the high frequency of technical symbols, mistyping/abbreviation of technical terms, and the presence of incomplete sentences in the drilling reports. We obtain state-of-the-art classification accuracy within this technical language and illustrate advanced queries enabled by the tool.Comment: 7 pages, 14 figures, technical repor
    corecore