27,870 research outputs found

    Metric mean dimension and analog compression

    Full text link
    Wu and Verd\'u developed a theory of almost lossless analog compression, where one imposes various regularity conditions on the compressor and the decompressor with the input signal being modelled by a (typically infinite-entropy) stationary stochastic process. In this work we consider all stationary stochastic processes with trajectories in a prescribed set of (bi-)infinite sequences and find uniform lower and upper bounds for certain compression rates in terms of metric mean dimension and mean box dimension. An essential tool is the recent Lindenstrauss-Tsukamoto variational principle expressing metric mean dimension in terms of rate-distortion functions. We obtain also lower bounds on compression rates for a fixed stationary process in terms of the rate-distortion dimension rates and study several examples.Comment: v3: Accepted for publication in IEEE Transactions on Information Theory. Additional examples were added. Material have been reorganized (with some parts removed). Minor mistakes were correcte

    New Uniform Bounds for Almost Lossless Analog Compression

    Full text link
    Wu and Verd\'u developed a theory of almost lossless analog compression, where one imposes various regularity conditions on the compressor and the decompressor with the input signal being modelled by a (typically infinite-entropy) stationary stochastic process. In this work we consider all stationary stochastic processes with trajectories in a prescribed set S⊂[0,1]Z\mathcal{S} \subset [0,1]^\mathbb{Z} of (bi)infinite sequences and find uniform lower and upper bounds for certain compression rates in terms of metric mean dimension and mean box dimension. An essential tool is the recent Lindenstrauss-Tsukamoto variational principle expressing metric mean dimension in terms of rate-distortion functions.Comment: This paper is going to be presented at 2019 IEEE International Symposium on Information Theory. It is a short version of arXiv:1812.0045

    On the Information Dimension of Stochastic Processes

    Get PDF
    In 1959, Rényi proposed the information dimension and the d-dimensional entropy to measure the information content of general random variables. This paper proposes a generalization of information dimension to stochastic processes by defining the information dimension rate as the entropy rate of the uniformly quantized stochastic process divided by minus the logarithm of the quantizer step size 1/m in the limit as m to infty. It is demonstrated that the information dimension rate coincides with the rate-distortion dimension, defined as twice the rate-distortion function R(D) of the stochastic process divided by -log (D) in the limit as D downarrow 0 . It is further shown that among all multivariate stationary processes with a given (matrix-valued) spectral distribution function (SDF), the Gaussian process has the largest information dimension rate and the information dimension rate of multivariate stationary Gaussian processes is given by the average rank of the derivative of the SDF. The presented results reveal that the fundamental limits of almost zero-distortion recovery via compressible signal pursuit and almost lossless analog compression are different in general.The work of Bernhard C. Geiger has partly been funded by the Erwin Schrödinger Fellowship J 3765 of the Austrian Science Fund and by the German Ministry of Education and Research in the framework of an Alexander von Humboldt Professorship. The Know-Center is funded within the Austrian COMET Program - Competence Centers for Excellent Technologies - under the auspices of the Austrian Federal Ministry of Transport, Innovation and Technology, the Austrian Federal Ministry of Digital and Economic Affairs, and by the State of Styria. COMET is managed by the Austrian Research Promotion Agency FFG. The work of Tobias Koch has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 714161), from the 7th European Union Framework Programme under Grant 333680, from the Ministerio de EconomÍa y Competitividad of Spain under Grants TEC2013-41718-R, RYC-2014-16332, and TEC2016-78434-C3-3-R (AEI/FEDER, EU), and from the Comunidad de Madrid under Grant S2103/ICE-2845

    Quadratic optimal functional quantization of stochastic processes and numerical applications

    Get PDF
    In this paper, we present an overview of the recent developments of functional quantization of stochastic processes, with an emphasis on the quadratic case. Functional quantization is a way to approximate a process, viewed as a Hilbert-valued random variable, using a nearest neighbour projection on a finite codebook. A special emphasis is made on the computational aspects and the numerical applications, in particular the pricing of some path-dependent European options.Comment: 41 page

    High-resolution distributed sampling of bandlimited fields with low-precision sensors

    Full text link
    The problem of sampling a discrete-time sequence of spatially bandlimited fields with a bounded dynamic range, in a distributed, communication-constrained, processing environment is addressed. A central unit, having access to the data gathered by a dense network of fixed-precision sensors, operating under stringent inter-node communication constraints, is required to reconstruct the field snapshots to maximum accuracy. Both deterministic and stochastic field models are considered. For stochastic fields, results are established in the almost-sure sense. The feasibility of having a flexible tradeoff between the oversampling rate (sensor density) and the analog-to-digital converter (ADC) precision, while achieving an exponential accuracy in the number of bits per Nyquist-interval per snapshot is demonstrated. This exposes an underlying ``conservation of bits'' principle: the bit-budget per Nyquist-interval per snapshot (the rate) can be distributed along the amplitude axis (sensor-precision) and space (sensor density) in an almost arbitrary discrete-valued manner, while retaining the same (exponential) distortion-rate characteristics. Achievable information scaling laws for field reconstruction over a bounded region are also derived: With N one-bit sensors per Nyquist-interval, Θ(log⁡N)\Theta(\log N) Nyquist-intervals, and total network bitrate Rnet=Θ((log⁡N)2)R_{net} = \Theta((\log N)^2) (per-sensor bitrate Θ((log⁡N)/N)\Theta((\log N)/N)), the maximum pointwise distortion goes to zero as D=O((log⁡N)2/N)D = O((\log N)^2/N) or D=O(Rnet2−βRnet)D = O(R_{net} 2^{-\beta \sqrt{R_{net}}}). This is shown to be possible with only nearest-neighbor communication, distributed coding, and appropriate interpolation algorithms. For a fixed, nonzero target distortion, the number of fixed-precision sensors and the network rate needed is always finite.Comment: 17 pages, 6 figures; paper withdrawn from IEEE Transactions on Signal Processing and re-submitted to the IEEE Transactions on Information Theor
    • …
    corecore