1,475 research outputs found

    Maximum Margin Multiclass Nearest Neighbors

    Full text link
    We develop a general framework for margin-based multicategory classification in metric spaces. The basic work-horse is a margin-regularized version of the nearest-neighbor classifier. We prove generalization bounds that match the state of the art in sample size nn and significantly improve the dependence on the number of classes kk. Our point of departure is a nearly Bayes-optimal finite-sample risk bound independent of kk. Although kk-free, this bound is unregularized and non-adaptive, which motivates our main result: Rademacher and scale-sensitive margin bounds with a logarithmic dependence on kk. As the best previous risk estimates in this setting were of order k\sqrt k, our bound is exponentially sharper. From the algorithmic standpoint, in doubling metric spaces our classifier may be trained on nn examples in O(n2log⁑n)O(n^2\log n) time and evaluated on new points in O(log⁑n)O(\log n) time

    Le Cam meets LeCun: Deficiency and Generic Feature Learning

    Full text link
    "Deep Learning" methods attempt to learn generic features in an unsupervised fashion from a large unlabelled data set. These generic features should perform as well as the best hand crafted features for any learning problem that makes use of this data. We provide a definition of generic features, characterize when it is possible to learn them and provide methods closely related to the autoencoder and deep belief network of deep learning. In order to do so we use the notion of deficiency and illustrate its value in studying certain general learning problems.Comment: 25 pages, 2 figure

    Federated Learning You May Communicate Less Often!

    Full text link
    We investigate the generalization error of statistical learning models in a Federated Learning (FL) setting. Specifically, we study the evolution of the generalization error with the number of communication rounds between the clients and the parameter server, i.e., the effect on the generalization error of how often the local models as computed by the clients are aggregated at the parameter server. We establish PAC-Bayes and rate-distortion theoretic bounds on the generalization error that account explicitly for the effect of the number of rounds, say R∈N R \in \mathbb{N}, in addition to the number of participating devices KK and individual datasets size nn. The bounds, which apply in their generality for a large class of loss functions and learning algorithms, appear to be the first of their kind for the FL setting. Furthermore, we apply our bounds to FL-type Support Vector Machines (FSVM); and we derive (more) explicit bounds on the generalization error in this case. In particular, we show that the generalization error of FSVM increases with RR, suggesting that more frequent communication with the parameter server diminishes the generalization power of such learning algorithms. Combined with that the empirical risk generally decreases for larger values of RR, this indicates that RR might be a parameter to optimize in order to minimize the population risk of FL algorithms. Moreover, specialized to the case R=1R=1 (sometimes referred to as "one-shot" FL or distributed learning) our bounds suggest that the generalization error of the FL setting decreases faster than that of centralized learning by a factor of O(log⁑(K)/K)\mathcal{O}(\sqrt{\log(K)/K}), thereby generalizing recent findings in this direction to arbitrary loss functions and algorithms. The results of this paper are also validated on some experiments

    PAC-Bayesian Bounds on Rate-Efficient Classifiers

    Get PDF
    We derive analytic bounds on the noise invariance of majority vote classifiers operating on compressed inputs. Specifically, starting from recent bounds on the true risk of majority vote classifiers, we extend the applicability of PAC-Bayesian theory to quantify the resilience of majority votes to input noise stemming from compression. The derived bounds are intuitive in binary classification settings, where they can be measured as expressions of voter differentials and voter pair agreement. By combining measures of input distortion with analytic guarantees on noise invariance, we prescribe rate-efficient machines to compress inputs without affecting subsequent classification. Our validation shows how bounding noise invariance can inform the compression stage for any majority vote classifier such that worst-case implications of bad input reconstructions are known, and inputs can be compressed to the minimum amount of information needed prior to inference

    Information Theory and Machine Learning

    Get PDF
    The recent successes of machine learning, especially regarding systems based on deep neural networks, have encouraged further research activities and raised a new set of challenges in understanding and designing complex machine learning algorithms. New applications require learning algorithms to be distributed, have transferable learning results, use computation resources efficiently, convergence quickly on online settings, have performance guarantees, satisfy fairness or privacy constraints, incorporate domain knowledge on model structures, etc. A new wave of developments in statistical learning theory and information theory has set out to address these challenges. This Special Issue, "Machine Learning and Information Theory", aims to collect recent results in this direction reflecting a diverse spectrum of visions and efforts to extend conventional theories and develop analysis tools for these complex machine learning systems
    • …
    corecore