8,316 research outputs found

    Rate-distance tradeoff for codes above graph capacity

    Get PDF
    The capacity of a graph is defined as the rate of exponential growth of independent sets in the strong powers of the graph. In the strong power an edge connects two sequences if at each position their letters are equal or adjacent. We consider a variation of the problem where edges in the power graphs are removed between sequences which differ in more than a fraction δ\delta of coordinates. The proposed generalization can be interpreted as the problem of determining the highest rate of zero undetected-error communication over a link with adversarial noise, where only a fraction δ\delta of symbols can be perturbed and only some substitutions are allowed. We derive lower bounds on achievable rates by combining graph homomorphisms with a graph-theoretic generalization of the Gilbert-Varshamov bound. We then give an upper bound, based on Delsarte's linear programming approach, which combines Lov\'asz' theta function with the construction used by McEliece et al. for bounding the minimum distance of codes in Hamming spaces.Comment: 5 pages. Presented at 2016 IEEE International Symposium on Information Theor

    Interference Mitigation in Large Random Wireless Networks

    Full text link
    A central problem in the operation of large wireless networks is how to deal with interference -- the unwanted signals being sent by transmitters that a receiver is not interested in. This thesis looks at ways of combating such interference. In Chapters 1 and 2, we outline the necessary information and communication theory background, including the concept of capacity. We also include an overview of a new set of schemes for dealing with interference known as interference alignment, paying special attention to a channel-state-based strategy called ergodic interference alignment. In Chapter 3, we consider the operation of large regular and random networks by treating interference as background noise. We consider the local performance of a single node, and the global performance of a very large network. In Chapter 4, we use ergodic interference alignment to derive the asymptotic sum-capacity of large random dense networks. These networks are derived from a physical model of node placement where signal strength decays over the distance between transmitters and receivers. (See also arXiv:1002.0235 and arXiv:0907.5165.) In Chapter 5, we look at methods of reducing the long time delays incurred by ergodic interference alignment. We analyse the tradeoff between reducing delay and lowering the communication rate. (See also arXiv:1004.0208.) In Chapter 6, we outline a problem that is equivalent to the problem of pooled group testing for defective items. We then present some new work that uses information theoretic techniques to attack group testing. We introduce for the first time the concept of the group testing channel, which allows for modelling of a wide range of statistical error models for testing. We derive new results on the number of tests required to accurately detect defective items, including when using sequential `adaptive' tests.Comment: PhD thesis, University of Bristol, 201

    On Secure Distributed Data Storage Under Repair Dynamics

    Full text link
    We address the problem of securing distributed storage systems against passive eavesdroppers that can observe a limited number of storage nodes. An important aspect of these systems is node failures over time, which demand a repair mechanism aimed at maintaining a targeted high level of system reliability. If an eavesdropper observes a node that is added to the system to replace a failed node, it will have access to all the data downloaded during repair, which can potentially compromise the entire information in the system. We are interested in determining the secrecy capacity of distributed storage systems under repair dynamics, i.e., the maximum amount of data that can be securely stored and made available to a legitimate user without revealing any information to any eavesdropper. We derive a general upper bound on the secrecy capacity and show that this bound is tight for the bandwidth-limited regime which is of importance in scenarios such as peer-to-peer distributed storage systems. We also provide a simple explicit code construction that achieves the capacity for this regime.Comment: 5 pages, 4 figures, to appear in Proceedings of IEEE ISIT 201

    On palimpsests in neural memory: an information theory viewpoint

    Full text link
    The finite capacity of neural memory and the reconsolidation phenomenon suggest it is important to be able to update stored information as in a palimpsest, where new information overwrites old information. Moreover, changing information in memory is metabolically costly. In this paper, we suggest that information-theoretic approaches may inform the fundamental limits in constructing such a memory system. In particular, we define malleable coding, that considers not only representation length but also ease of representation update, thereby encouraging some form of recycling to convert an old codeword into a new one. Malleability cost is the difficulty of synchronizing compressed versions, and malleable codes are of particular interest when representing information and modifying the representation are both expensive. We examine the tradeoff between compression efficiency and malleability cost, under a malleability metric defined with respect to a string edit distance. This introduces a metric topology to the compressed domain. We characterize the exact set of achievable rates and malleability as the solution of a subgraph isomorphism problem. This is all done within the optimization approach to biology framework.Accepted manuscrip

    High rate locally-correctable and locally-testable codes with sub-polynomial query complexity

    Full text link
    In this work, we construct the first locally-correctable codes (LCCs), and locally-testable codes (LTCs) with constant rate, constant relative distance, and sub-polynomial query complexity. Specifically, we show that there exist binary LCCs and LTCs with block length nn, constant rate (which can even be taken arbitrarily close to 1), constant relative distance, and query complexity exp(O~(logn))\exp(\tilde{O}(\sqrt{\log n})). Previously such codes were known to exist only with Ω(nβ)\Omega(n^{\beta}) query complexity (for constant β>0\beta > 0), and there were several, quite different, constructions known. Our codes are based on a general distance-amplification method of Alon and Luby~\cite{AL96_codes}. We show that this method interacts well with local correctors and testers, and obtain our main results by applying it to suitably constructed LCCs and LTCs in the non-standard regime of \emph{sub-constant relative distance}. Along the way, we also construct LCCs and LTCs over large alphabets, with the same query complexity exp(O~(logn))\exp(\tilde{O}(\sqrt{\log n})), which additionally have the property of approaching the Singleton bound: they have almost the best-possible relationship between their rate and distance. This has the surprising consequence that asking for a large alphabet error-correcting code to further be an LCC or LTC with exp(O~(logn))\exp(\tilde{O}(\sqrt{\log n})) query complexity does not require any sacrifice in terms of rate and distance! Such a result was previously not known for any o(n)o(n) query complexity. Our results on LCCs also immediately give locally-decodable codes (LDCs) with the same parameters
    corecore