12 research outputs found

    ANALYSIS OF DATA & COMPUTER NETWORKS IN STUDENTS' RESIDENTIAL AREA IN UNIVERSITI TEKNOLOGI PETRONAS

    Get PDF
    In Universiti Teknologi Petronas (UTP), most of the students depend on the Internet and computer network connection to gain academics information and share educational resources. Even though the Internet connections and computers networks are provided, the service always experience interruption, such as slow Internet access, viruses and worms distribution, and network abuse by irresponsible students. Since UTP organization keeps on expanding, the need for a better service in UTP increases. Several approaches were put into practice to address the problems. Research on data and computer network was performed to understand the network technology applied in UTP. A questionnaire forms were distributed among the students to obtain feedback and statistical data about UTP's network in Students' Residential Area. The studies concentrate only on Students' Residential Area as it is where most of the users reside. From the survey, it can be observed that 99% of the students access the network almost 24 hours a day. In 2005, the 2 Mbps allocated bandwidth was utilized 100% almost continuously but in 2006, the bottleneck of Internet access has reduced significantly since the bandwidth allocated have been increased to 8 Mbps. Server degradation due to irresponsible acts by users also adds burden to the main server. In general, if the proposal to ITMS (Information Technology & Media Services) Department for them to improve their Quality of Service (QoS) and established UTP Computer Emergency Response Team (UCert), most of the issues addressed in this report can be solved

    A tunable-channel multi-access wavelength division multiplexed network and surveillance schemes for optical cross-connects.

    Get PDF
    by Eddie Ting Pong Kong.Thesis (M.Phil.)--Chinese University of Hong Kong, 1999.Includes bibliographical references (leaves 61-68).Abstracts in English and Chinese.Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Optical Network Architecture --- p.1Chapter 1.2 --- High-Speed All-Optical Tunable-Channel Multi-Access Networks --- p.3Chapter 1.3 --- Fault Surveillance of Optical Cross-Connects in Wavelength Routing Network --- p.3Chapter 1.4 --- Outline of the Thesis --- p.5Chapter 2 --- Optical Multi-Access Networks --- p.6Chapter 2.1 --- All-Optical Networks --- p.6Chapter 2.2 --- Optical Multi-Access Schemes --- p.8Chapter 2.2.1 --- Wavelength-Division Multi-Access (WDMA) --- p.9Chapter 2.2.2 --- Time-Division Multi-Access (TDMA) --- p.12Chapter 2.2.3 --- Subcarrier Multi-Access (SCMA) --- p.14Chapter 2.3 --- Design Considerations --- p.14Chapter 3 --- All-Optical Tunable-Channel Multi-Access Networks --- p.18Chapter 3.1 --- Tunable-Channel Multi-Access Networks --- p.19Chapter 3.2 --- Protocols for TCMA Networks --- p.20Chapter 3.3 --- Photonic Implementation of a Wavelength Division TCMA Network with Time- Slot Access --- p.23Chapter 3.3.1 --- Proposed Network Architecture --- p.25Chapter 3.3.2 --- Experimental Results --- p.30Chapter 3.3.3 --- Discussion --- p.34Chapter 3.3.4 --- Summary --- p.35Chapter 4 --- Fault Surveillance for Optical Cross-Connects in Wavelength Routing Networks --- p.36Chapter 4.1 --- Wavelength Routing Networks --- p.37Chapter 4.2 --- Options in Fault Surveillance --- p.39Chapter 4.3 --- Optical Path Surveillance of Optical Cross-Connects in Wavelength Routing Networks --- p.41Chapter 4.3.1 --- Scanning Amplified Spontaneous Emission Identification Surveillance Scheme --- p.43Chapter 4.3.2 --- Pilot-Tone Based Surveillance and Removal Scheme --- p.49Chapter 4.4 --- Summary --- p.55Chapter 5 --- Conclusion --- p.57Chapter 5.1 --- Summary of the Thesis --- p.57Chapter 5.2 --- Future Work --- p.60Bibliography --- p.61Publication List --- p.5

    Dynamically reconfigurable optical access network

    Get PDF
    This dissertation presents the research results on a fiber-optic high-bitrate access network which enables dynamic bandwidth allocation as a response to varying subscribers' demands and bandwidth needs of emerging services. The motivation of the research is given in Chapter 1 "Introduction" together with a brief comparative discussion on currently available and future access networks. The idea of wavelength reconfigurability in the last-mile networks is described as a solution for more efficient bandwidth utilization and a subject of the Broadband Photonics project. Chapter 2 "Wavelength-flexible WDM/TDM access network - architecture" provides a comprehensive description of the proposed solution with each network element being analyzed in terms of its functionalities. This includes a colorless optical network unit and a reconfigurable optical add/drop multiplexer. An estimation of power budget is followed by the choice of wavelength set and network control and management layer overview. In Chapter 3 "Reflective transceiver module for ONU" after discussing different communication schemes and modulation formats three approaches to a colorless high-bitrate transmitter are analyzed in detail. This includes experiment and simulation results on a reflective semiconductor optical amplifier, reflective electro-absorption modulator and a Michelson-interferometer modulator. The Chapter is concluded with a comparative discussion. Chapter 4 "Reconfigurable optical add/drop multiplexer" discusses another key element in the proposed network architecture which is an integrated structure of micro-ring resonators providing wavelength reconfigurability. The measured characteristics assess the applicability of the device able to support unicast and multicast transmission. A range of possible sources of signal degradation in the access links are analyzed in Chapter 5 "Transmission and network impairments in the access network". An estimation of potential power penalties resulting from such impairments in the proposed system follow afterwards. Special attention is paid to optical in-band crosstalk penalties and improvement methods in Chapter 6 "Interferometric crosstalk in the access network with an RSOA". This subject is treated extensively with the support of mathematical considerations and experimental results. Proof-of-concept experiments of the proposed network architecture are presented in Chapter 7 "Reconfigurable WDM/TDM access network - experiments". The results of bidirectional transmission of high-bitrate WDM signals in different wavelength allocation schemes are discussed in detail. From there, by means of simulations the behavior of a full-scale network is assessed. In Chapter 8 "Migration towards WDM/TDM access network" the migration scenario from currently deployed fiber-optic access networks towards the novel solution is proposed. Afterwards, a short dispute on the economics of last-mile fiber technologies is included. Finally, the work is concluded and potential future research ideas based on this thesis are given in Chapter 9 "Conclusions and further work"

    ANALYSIS OF DATA & COMPUTER NETWORKS IN STUDENTS' RESIDENTIAL AREA IN UNIVERSITI TEKNOLOGI PETRONAS

    Get PDF
    In Universiti Teknologi Petronas (UTP), most of the students depend on the Internet and computer network connection to gain academics information and share educational resources. Even though the Internet connections and computers networks are provided, the service always experience interruption, such as slow Internet access, viruses and worms distribution, and network abuse by irresponsible students. Since UTP organization keeps on expanding, the need for a better service in UTP increases. Several approaches were put into practice to address the problems. Research on data and computer network was performed to understand the network technology applied in UTP. A questionnaire forms were distributed among the students to obtain feedback and statistical data about UTP's network in Students' Residential Area. The studies concentrate only on Students' Residential Area as it is where most of the users reside. From the survey, it can be observed that 99% of the students access the network almost 24 hours a day. In 2005, the 2 Mbps allocated bandwidth was utilized 100% almost continuously but in 2006, the bottleneck of Internet access has reduced significantly since the bandwidth allocated have been increased to 8 Mbps. Server degradation due to irresponsible acts by users also adds burden to the main server. In general, if the proposal to ITMS (Information Technology & Media Services) Department for them to improve their Quality of Service (QoS) and established UTP Computer Emergency Response Team (UCert), most of the issues addressed in this report can be solved

    Smart PIN: performance and cost-oriented context-aware personal information network

    Get PDF
    The next generation of networks will involve interconnection of heterogeneous individual networks such as WPAN, WLAN, WMAN and Cellular network, adopting the IP as common infrastructural protocol and providing virtually always-connected network. Furthermore, there are many devices which enable easy acquisition and storage of information as pictures, movies, emails, etc. Therefore, the information overload and divergent content’s characteristics make it difficult for users to handle their data in manual way. Consequently, there is a need for personalised automatic services which would enable data exchange across heterogeneous network and devices. To support these personalised services, user centric approaches for data delivery across the heterogeneous network are also required. In this context, this thesis proposes Smart PIN - a novel performance and cost-oriented context-aware Personal Information Network. Smart PIN's architecture is detailed including its network, service and management components. Within the service component, two novel schemes for efficient delivery of context and content data are proposed: Multimedia Data Replication Scheme (MDRS) and Quality-oriented Algorithm for Multiple-source Multimedia Delivery (QAMMD). MDRS supports efficient data accessibility among distributed devices using data replication which is based on a utility function and a minimum data set. QAMMD employs a buffer underflow avoidance scheme for streaming, which achieves high multimedia quality without content adaptation to network conditions. Simulation models for MDRS and QAMMD were built which are based on various heterogeneous network scenarios. Additionally a multiple-source streaming based on QAMMS was implemented as a prototype and tested in an emulated network environment. Comparative tests show that MDRS and QAMMD perform significantly better than other approaches

    Internet of Things From Hype to Reality

    Get PDF
    The Internet of Things (IoT) has gained significant mindshare, let alone attention, in academia and the industry especially over the past few years. The reasons behind this interest are the potential capabilities that IoT promises to offer. On the personal level, it paints a picture of a future world where all the things in our ambient environment are connected to the Internet and seamlessly communicate with each other to operate intelligently. The ultimate goal is to enable objects around us to efficiently sense our surroundings, inexpensively communicate, and ultimately create a better environment for us: one where everyday objects act based on what we need and like without explicit instructions

    Multimode fibre broadband access and self-referencing sensor networks

    Get PDF
    Future Internet Access technologies are supposed to bring us a very performing connection to the main door of our homes. At the same time, new services and devices and their increase use will require data transfers at speeds exceeding 1Gbps inside the building or home at the horizon 2012. Both drivers lead to the deployment of a high-quality, futureproof network inside buildings and homes. This environment may end up taking advantage of optical cabling solutions as an alternative to more traditional copper or pure wireless approaches. Related to this latter fact, the objectives of this work are: • The achievement of a full convergence scenario between optical networks from the telecommunication services providers to the end users underscores the necessity of accurate and realistic fibre models in assessing the performance of broadband access networks with the premises of high-capacity and total compatibility. Silicabased MMFs and PF GIPOFs are the most promising candidates for such a convergence within the in-building/home scenario. Contributions to a better understanding of the possibilities of signal transmission outside the baseband of such fibres are investigated, in order to extend their capabilities, together with the evaluation of current fibre frequency response theoretical models by means of an extensive set of measurements. • The achievement of a full convergence scenario between optical networks from the telecommunication services providers to the end users is also contingent on research and development in the field of optical fibre sensors, mainly driven by the growing demand of fully building/home and industry automation, leading to a reliable integration of the optical networks. Related to this, development of multiplexing and measurement techniques for fibre-optic intensity-based sensors are analyzed and experimentally investigated. In the sensor network topology proposed, by replacing the fibre delay line with an electronic delay in the reception stage, it is possible to avoid long fibre delay coils in the remote sensing points and achieving a compact, flexible and re-configurable self-referencing technique. Applications in both scenarios can be considered, on the one hand the in-building/home network and on the other hand the WDM-PON access network topology through which operators provision the different services. -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------La demanda e incursión en la sociedad de nuevos servicios multimedia, tales como televisión por Internet (IPTV, Internet Protocol Television) o video-bajo-demanda (VoD, Video on Demand) junto con el incremento del tráfico de datos requerido para nuevas aplicaciones como la televisión por alta definición (HDTV, High-Definition Television) y transferencias P2P (Peer-to-Peer) exigen un aumento de la capacidad de las redes de datos desplegadas hoy en día. Para hacer frente a este aumento de la demanda de capacidad de las redes de acceso, los proveedores de estos servicios multimedia están reemplazando las infraestructuras de las redes de acceso basadas en cable coaxial, tales como xDSL (x- Digital Subscriber Line), por otras nuevas de mayor capacidad desplegadas en fibra óptica, permitiendo la interconexión de los nodos de red con los múltiples hogares y negocios de los abonados, constituyendo el núcleo de lo que es conocido como “fibra hasta el hogar/nodo/edificio” o redes FTTx. Tradicionalmente el despliegue de las redes ópticas se ha realizado mediante fibra óptica monomodo de sílice (SMF, Singlemode Fibre). Ello es debido a su gran ancho de banda que permite una gran capacidad de transporte de servicios y datos. Es por ello que en base a este tipo de fibra se ha realizado el despliegue de redes de distribución y metropolitanas y, de un tiempo a esta parte, incluso penetrando su instalación en las redes de acceso. Junto con lo anteriormente expuesto, existe una necesidad de convergencia de servicios e infraestructuras dentro de las redes de acceso. Actualmente, cables coaxiales, par trenzado de cobre e incluso señales inalámbricas se encuentran entremezcladas dentro del hogar proporcionando servicios diferentes con apenas cooperación entre ellos. Una infraestructura común dentro del hogar en el que una gran cantidad de servicios pudieran ser integrados y soportados por la misma sería un aspecto deseable. Y es más, frente a las desventajas de infraestructuras basadas en cable de cobre (cable coaxial y par trenzado) como son susceptibilidad a interferencias electromagnéticas, presencia de crosstalk y relativa baja capacidad de transporte de datos, las fibras ópticas (tanto en su versión monomodo como multimodo) presentan las ventajas de un menor volumen, mayor flexibilidad y menor peso junto con una capacidad mayor de transmisión de datos sobre distancias mayores. Es por esto que éstas últimas constituyen la base para las futuras redes de acceso en el hogar

    Proyecto de Sistema de Cableado Estructurado para el Edificio ZAL

    Get PDF
    En este proyecto se ha llevado a cabo el diseño de la LAN para un edificio de oficinas real cuyo nombre es Edificio ZAL. Éste se encuentra ubicado en un polígono industrial a las a fueras de la ciudad de Algeciras, provincia de Cádiz. El Edificio ZAL es de nueva construcción, constituido por dos torres cilíndricas denominadas oficialmente Torre A y Torre B. La Torre A dispone de 6 plantas más la planta baja. La Torre B está constituida por 2 plantas más la planta baja. Ambas torres están unidas por un pasillo central, ubicado en la planta baja de ambas torres. Con el proyecto se pretende desarrollar y adquirir conocimientos y destrezas necesarias que permitan llevar a buen término el estudio, diseño e implementación de una red LAN a nivel de cableado como de selección de dispositivos de interconexiónArchivo pdf con 394 página
    corecore