780 research outputs found

    Poor Man's Content Centric Networking (with TCP)

    Get PDF
    A number of different architectures have been proposed in support of data-oriented or information-centric networking. Besides a similar visions, they share the need for designing a new networking architecture. We present an incrementally deployable approach to content-centric networking based upon TCP. Content-aware senders cooperate with probabilistically operating routers for scalable content delivery (to unmodified clients), effectively supporting opportunistic caching for time-shifted access as well as de-facto synchronous multicast delivery. Our approach is application protocol-independent and provides support beyond HTTP caching or managed CDNs. We present our protocol design along with a Linux-based implementation and some initial feasibility checks

    Progressive Caching System for Video Streaming Services Over Content Centric Network

    Get PDF
    This paper presents a metafile-based progressive caching system over the content-centric networking (CCN) tree that supports seamless video streaming services with a high network utilization. In the proposed caching system, each CCN node uses a metafile made by a scalable caching algorithm for efficient and fast chunk caching management, and the reserved area of the CCN interest/data packet headers is used to deliver caching information among the CCN nodes. Based on this caching information, the proposed caching system determines the caching range of video data to minimize the required peak bandwidth for each link. The proposed caching system is implemented using the NS-3 based named data networking simulator. Furthermore, a real cellular wireless network testbed is realized with C/C++, open sources such as CCNx and Ubuntu MME, and a Raspberry PIs to examine the performance of the proposed caching system. The experiment results demonstrate the performance improvement achieved by the proposed caching system.11Ysciescopu

    Understanding information centric layer of adaptive collaborative caching framework in mobile disconnection-prone networks

    Get PDF
    Smart networks and services leverage in-network caching to improve transmission efficiency and support large amount of content sharing, decrease high operating costs and handle disconnections. In this paper, we investigate the complex challenges related to content popularity weighting process in collaborative caching algorithm in heterogeneous mobile disconnection prone environments. We describe a reputation-based popularity weighting mechanism built in information-centric layer of our adaptive collaborative caching framework CafRepCache which considers a realistic case where caching points gathering content popularity observed by nodes differentiates between them according to node's reputation and network's connectivity. We extensively evaluate CafRepCache with competitive protocols across three heterogeneous real-world mobility, connectivity traces and use YouTube dataset for different workload and content popularity patterns. We show that our collaborative caching mechanism CafRepCache balances the trade-off that achieves higher cache hit ratio, efficiency and success ratios while keeping lower delays, packet loss and caching footprint compared to competing protocols across three traces in the face of dynamic mobility of publishers and subscribers

    Quality of experience-centric management of adaptive video streaming services : status and challenges

    Get PDF
    Video streaming applications currently dominate Internet traffic. Particularly, HTTP Adaptive Streaming ( HAS) has emerged as the dominant standard for streaming videos over the best-effort Internet, thanks to its capability of matching the video quality to the available network resources. In HAS, the video client is equipped with a heuristic that dynamically decides the most suitable quality to stream the content, based on information such as the perceived network bandwidth or the video player buffer status. The goal of this heuristic is to optimize the quality as perceived by the user, the so-called Quality of Experience (QoE). Despite the many advantages brought by the adaptive streaming principle, optimizing users' QoE is far from trivial. Current heuristics are still suboptimal when sudden bandwidth drops occur, especially in wireless environments, thus leading to freezes in the video playout, the main factor influencing users' QoE. This issue is aggravated in case of live events, where the player buffer has to be kept as small as possible in order to reduce the playout delay between the user and the live signal. In light of the above, in recent years, several works have been proposed with the aim of extending the classical purely client-based structure of adaptive video streaming, in order to fully optimize users' QoE. In this article, a survey is presented of research works on this topic together with a classification based on where the optimization takes place. This classification goes beyond client-based heuristics to investigate the usage of server-and network-assisted architectures and of new application and transport layer protocols. In addition, we outline the major challenges currently arising in the field of multimedia delivery, which are going to be of extreme relevance in future years

    Fair-RTT-DAS: A robust and efficient dynamic adaptive streaming over ICN

    Get PDF
    To sustain the adequate bandwidth demands over rapidly growing multimedia traffic and considering the effectiveness of Information-Centric Networking (ICN), recently, HTTP based Dynamic Adaptive Streaming (DASH) has been introduced over ICN, which significantly increases the network bandwidth utilisation. However, we identified that the inherent features of ICN also causes new vulnerabilities in the network. In this paper, we first propose a novel attack called as Bitrate Oscillation Attack (BOA), which exploits fundamental ICN characteristics: in-network caching and interest aggregation, to disrupt DASH functionality. In particular, the proposed attack forces the bitrate and resolution of video received by the attacked client to oscillate with high frequency and high amplitude during the streaming process. To detect and mitigate BOA, we design and implement a reactive countermeasure called Fair-RTT-DAS. Our solution ensures efficient bandwidth utilisation and improves the user perceived Quality of Experience (QoE) in the presence of varying content source locations. For this purpose, Fair-RTT-DAS consider DASH\u2019s two significant features: round-trip-time (RTT) and throughput fairness. In the presence of BOA in a network, our simulation results show an increase in the annoyance factor in user\u2019s spatial dimension, i.e., increase in oscillation frequency and amplitude. The results also show that our countermeasure significantly alleviates these adverse effects and makes dynamic adaptive streaming friendly to ICN\u2019s implicit features

    Understanding information centric layer of adaptive collaborative caching framework in mobile disconnection-prone networks

    Get PDF
    Smart networks and services leverage in-network caching to improve transmission efficiency and support large amount of content sharing, decrease high operating costs and handle disconnections. In this paper, we investigate the complex challenges related to content popularity weighting process in collaborative caching algorithm in heterogeneous mobile disconnection prone environments. We describe a reputation-based popularity weighting mechanism built in information-centric layer of our adaptive collaborative caching framework CafRepCache which considers a realistic case where caching points gathering content popularity observed by nodes differentiates between them according to node's reputation and network's connectivity. We extensively evaluate CafRepCache with competitive protocols across three heterogeneous real-world mobility, connectivity traces and use YouTube dataset for different workload and content popularity patterns. We show that our collaborative caching mechanism CafRepCache balances the trade-off that achieves higher cache hit ratio, efficiency and success ratios while keeping lower delays, packet loss and caching footprint compared to competing protocols across three traces in the face of dynamic mobility of publishers and subscribers

    To NACK or not to NACK? Negative Acknowledgments in Information-Centric Networking

    Full text link
    Information-Centric Networking (ICN) is an internetworking paradigm that offers an alternative to the current IP\nobreakdash-based Internet architecture. ICN's most distinguishing feature is its emphasis on information (content) instead of communication endpoints. One important open issue in ICN is whether negative acknowledgments (NACKs) at the network layer are useful for notifying downstream nodes about forwarding failures, or requests for incorrect or non-existent information. In benign settings, NACKs are beneficial for ICN architectures, such as CCNx and NDN, since they flush state in routers and notify consumers. In terms of security, NACKs seem useful as they can help mitigating so-called Interest Flooding attacks. However, as we show in this paper, network-layer NACKs also have some unpleasant security implications. We consider several types of NACKs and discuss their security design requirements and implications. We also demonstrate that providing secure NACKs triggers the threat of producer-bound flooding attacks. Although we discuss some potential countermeasures to these attacks, the main conclusion of this paper is that network-layer NACKs are best avoided, at least for security reasons.Comment: 10 pages, 7 figure
    corecore