110,350 research outputs found

    Detection of atrial fibrillation episodes in long-term heart rhythm signals using a support vector machine

    Get PDF
    Atrial fibrillation (AF) is a serious heart arrhythmia leading to a significant increase of the risk for occurrence of ischemic stroke. Clinically, the AF episode is recognized in an electrocardiogram. However, detection of asymptomatic AF, which requires a long-term monitoring, is more efficient when based on irregularity of beat-to-beat intervals estimated by the heart rate (HR) features. Automated classification of heartbeats into AF and non-AF by means of the Lagrangian Support Vector Machine has been proposed. The classifier input vector consisted of sixteen features, including four coefficients very sensitive to beat-to-beat heart changes, taken from the fetal heart rate analysis in perinatal medicine. Effectiveness of the proposed classifier has been verified on the MIT-BIH Atrial Fibrillation Database. Designing of the LSVM classifier using very large number of feature vectors requires extreme computational efforts. Therefore, an original approach has been proposed to determine a training set of the smallest possible size that still would guarantee a high quality of AF detection. It enables to obtain satisfactory results using only 1.39% of all heartbeats as the training data. Post-processing stage based on aggregation of classified heartbeats into AF episodes has been applied to provide more reliable information on patient risk. Results obtained during the testing phase showed the sensitivity of 98.94%, positive predictive value of 98.39%, and classification accuracy of 98.86%.Web of Science203art. no. 76

    Fully-Automatic Multiresolution Idealization for Filtered Ion Channel Recordings: Flickering Event Detection

    Full text link
    We propose a new model-free segmentation method, JULES, which combines recent statistical multiresolution techniques with local deconvolution for idealization of ion channel recordings. The multiresolution criterion takes into account scales down to the sampling rate enabling the detection of flickering events, i.e., events on small temporal scales, even below the filter frequency. For such small scales the deconvolution step allows for a precise determination of dwell times and, in particular, of amplitude levels, a task which is not possible with common thresholding methods. This is confirmed theoretically and in a comprehensive simulation study. In addition, JULES can be applied as a preprocessing method for a refined hidden Markov analysis. Our new methodolodgy allows us to show that gramicidin A flickering events have the same amplitude as the slow gating events. JULES is available as an R function jules in the package clampSeg

    Improved Stack-Slide Searches for Gravitational-Wave Pulsars

    Full text link
    We formulate and optimize a computational search strategy for detecting gravitational waves from isolated, previously-unknown neutron stars (that is, neutron stars with unknown sky positions, spin frequencies, and spin-down parameters). It is well known that fully coherent searches over the relevant parameter-space volumes are not computationally feasible, and so more computationally efficient methods are called for. The first step in this direction was taken by Brady & Creighton (2000), who proposed and optimized a two-stage, stack-slide search algorithm. We generalize and otherwise improve upon the Brady-Creighton scheme in several ways. Like Brady & Creighton, we consider a stack-slide scheme, but here with an arbitrary number of semi-coherent stages and with a coherent follow-up stage at the end. We find that searches with three semi-coherent stages are significantly more efficient than two-stage searches (requiring about 2-5 times less computational power for the same sensitivity) and are only slightly less efficient than searches with four or more stages. We calculate the signal-to-noise ratio required for detection, as a function of computing power and neutron star spin-down-age, using our optimized searches.Comment: 19 pages, 7 figures, RevTeX

    Time-frequency detection algorithm for gravitational wave bursts

    Get PDF
    An efficient algorithm is presented for the identification of short bursts of gravitational radiation in the data from broad-band interferometric detectors. The algorithm consists of three steps: pixels of the time-frequency representation of the data that have power above a fixed threshold are first identified. Clusters of such pixels that conform to a set of rules on their size and their proximity to other clusters are formed, and a final threshold is applied on the power integrated over all pixels in such clusters. Formal arguments are given to support the conjecture that this algorithm is very efficient for a wide class of signals. A precise model for the false alarm rate of this algorithm is presented, and it is shown using a number of representative numerical simulations to be accurate at the 1% level for most values of the parameters, with maximal error around 10%.Comment: 26 pages, 15 figures, to appear in PR

    Inpainting of long audio segments with similarity graphs

    Full text link
    We present a novel method for the compensation of long duration data loss in audio signals, in particular music. The concealment of such signal defects is based on a graph that encodes signal structure in terms of time-persistent spectral similarity. A suitable candidate segment for the substitution of the lost content is proposed by an intuitive optimization scheme and smoothly inserted into the gap, i.e. the lost or distorted signal region. Extensive listening tests show that the proposed algorithm provides highly promising results when applied to a variety of real-world music signals
    • …
    corecore