382 research outputs found

    On Coding for Cache-Aided Delivery of Dynamic Correlated Content

    Full text link
    Cache-aided coded multicast leverages side information at wireless edge caches to efficiently serve multiple unicast demands via common multicast transmissions, leading to load reductions that are proportional to the aggregate cache size. However, the increasingly dynamic, unpredictable, and personalized nature of the content that users consume challenges the efficiency of existing caching-based solutions in which only exact content reuse is explored. This paper generalizes the cache-aided coded multicast problem to specifically account for the correlation among content files, such as, for example, the one between updated versions of dynamic data. It is shown that (i) caching content pieces based on their correlation with the rest of the library, and (ii) jointly compressing requested files using cached information as references during delivery, can provide load reductions that go beyond those achieved with existing schemes. This is accomplished via the design of a class of correlation-aware achievable schemes, shown to significantly outperform state-of-the-art correlation-unaware solutions. Our results show that as we move towards real-time and/or personalized media dominated services, where exact cache hits are almost non-existent but updates can exhibit high levels of correlation, network cached information can still be useful as references for network compression.Comment: To apear in IEEE Journal on Selected Areas in Communication

    Spectrum Sharing, Latency, and Security in 5G Networks with Application to IoT and Smart Grid

    Get PDF
    The surge of mobile devices, such as smartphones, and tables, demands additional capacity. On the other hand, Internet-of-Things (IoT) and smart grid, which connects numerous sensors, devices, and machines require ubiquitous connectivity and data security. Additionally, some use cases, such as automated manufacturing process, automated transportation, and smart grid, require latency as low as 1 ms, and reliability as high as 99.99\%. To enhance throughput and support massive connectivity, sharing of the unlicensed spectrum (3.5 GHz, 5GHz, and mmWave) is a potential solution. On the other hand, to address the latency, drastic changes in the network architecture is required. The fifth generation (5G) cellular networks will embrace the spectrum sharing and network architecture modifications to address the throughput enhancement, massive connectivity, and low latency. To utilize the unlicensed spectrum, we propose a fixed duty cycle based coexistence of LTE and WiFi, in which the duty cycle of LTE transmission can be adjusted based on the amount of data. In the second approach, a multi-arm bandit learning based coexistence of LTE and WiFi has been developed. The duty cycle of transmission and downlink power are adapted through the exploration and exploitation. This approach improves the aggregated capacity by 33\%, along with cell edge and energy efficiency enhancement. We also investigate the performance of LTE and ZigBee coexistence using smart grid as a scenario. In case of low latency, we summarize the existing works into three domains in the context of 5G networks: core, radio and caching networks. Along with this, fundamental constraints for achieving low latency are identified followed by a general overview of exemplary 5G networks. Besides that, a loop-free, low latency and local-decision based routing protocol is derived in the context of smart grid. This approach ensures low latency and reliable data communication for stationary devices. To address data security in wireless communication, we introduce a geo-location based data encryption, along with node authentication by k-nearest neighbor algorithm. In the second approach, node authentication by the support vector machine, along with public-private key management, is proposed. Both approaches ensure data security without increasing the packet overhead compared to the existing approaches

    A review on green caching strategies for next generation communication networks

    Get PDF
    © 2020 IEEE. In recent years, the ever-increasing demand for networking resources and energy, fueled by the unprecedented upsurge in Internet traffic, has been a cause for concern for many service providers. Content caching, which serves user requests locally, is deemed to be an enabling technology in addressing the challenges offered by the phenomenal growth in Internet traffic. Conventionally, content caching is considered as a viable solution to alleviate the backhaul pressure. However, recently, many studies have reported energy cost reductions contributed by content caching in cache-equipped networks. The hypothesis is that caching shortens content delivery distance and eventually achieves significant reduction in transmission energy consumption. This has motivated us to conduct this study and in this article, a comprehensive survey of the state-of-the-art green caching techniques is provided. This review paper extensively discusses contributions of the existing studies on green caching. In addition, the study explores different cache-equipped network types, solution methods, and application scenarios. We categorically present that the optimal selection of the caching nodes, smart resource management, popular content selection, and renewable energy integration can substantially improve energy efficiency of the cache-equipped systems. In addition, based on the comprehensive analysis, we also highlight some potential research ideas relevant to green content caching

    Cache-Aided Delivery Networks with Correlated Content in a Shared Cache Framework

    Get PDF
    Internet traffic is growing exponentially due to the penetration of powerful internet-connected devices and cutting-edge technologies. Additionally, the rise in internet usage has coincided with a shift in the nature of data traffic from voice-based to content-based usage, putting significant stress on delivery networks. Despite the infrastructural advancements in communication networks over the past few years, content delivery networks (CDNs) still face challenges in keeping up with the high delivery data rates and suffer from the imbalanced network load between off-peak hours and peak hours. In this regard, content caching has emerged as an efficient technique to combat the high delivery date rates and maintain a balanced network load while improving the quality of services (QoS) by storing some popular content close to the end users. Caching networks operate in two phases; the placement phase during off-peak hours before users reveal their demands and the delivery phase, which is accomplished when users’ demands are revealed to the server during peak hours. As the server is unaware of the demands during the placement phase, this phase must be designed carefully to minimize the delivery rate regardless of the requested content during peak hours. This dissertation studies cache-aided delivery networks with correlated content in a shared cache framework. A shared cache framework is beneficial in the current and next-generation wireless networks as it provides a local cache to all users within small base stations (SBSs), relieving strain on the backhaul. Furthermore, the library of a caching network could consist of content with a high degree of similarity in many practical applications; Therefore, exploiting the similarity among library content can also be leveraged to reduce the delivery rate in such networks. In this dissertation, we look at the proposed caching network from an information-theoretic perspective and formulate it as a distributed source coding problem with side information at the decoder. Then, the critical question arises as to what should be cached as side information to reduce the delivery rate of the network efficiently. To answer this question, we propose an automatic clustering scheme using artificial intelligence (AI)-based optimization techniques to identify the selected side information for the entire library. We comprehensively evaluate the performance of the general clustering framework in a separate chapter by considering different datasets and distance measures. The general clustering framework enables us to develop two novel clustering schemes as a part of the placement phase of the proposed caching networks under different settings throughout this study, considering both the similarity and popularity of the library content. Upon identifying the selected side information for such networks, the next question that should be answered is how we should place the side information into caches; And consequently, what is the delivery strategy for this placement scheme? We have furnished our answer to these questions by considering three different caching networks: first, a network in a single shared cache framework under lossy caching. Next is a network with multiple shared caches under uniform popularity, and finally, a network with multiple shared caches under non-uniform preferences. In such networks, we address the placement and delivery strategy to show the trade-off between the delivery rate and the memory size of the system. We calculate the peak and expected rates of the studied networks by considering the rate-distortion function and caching strategy. We also introduce the optimum library partitioning formulated to minimize the peak delivery rate in the system. The performance analysis and extensive simulations of the proposed solution confirm that our scheme provides a considerable boost in network efficiency compared to legacy caching schemes due to our problem formulation and the careful extraction of side information during the placement phase

    Delivery of 360° videos in edge caching assisted wireless cellular networks

    Get PDF
    In recent years, 360° videos have become increasingly popular on commercial social platforms, and are a vital part of emerging Virtual Reality (VR) applications. However, the delivery of 360° videos requires significant bandwidth resources, which makes streaming of such data on mobile networks challenging. The bandwidth required for delivering 360° videos can be reduced by exploiting the fact that users are interested in viewing only a part of the video scene, the requested viewport. As different users may request different viewports, some parts of the 360° scenes may be more popular than others. 360° video delivery on mobile networks can be facilitated by caching popular content at edge servers, and delivering it from there to the users. However, existing edge caching schemes do not take full potential of the unequal popularity of different parts of a video, which renders them inefficient for caching 360° videos. Inspired by the above, in this thesis, we investigate how advanced 360° video coding tools, i.e., encoding into multiple quality layers and tiles, can be utilized to build more efficient wireless edge caching schemes for 360° videos. The above encoding allows the caching of only the parts of the 360° videos that are popular in high quality. To understand how edge caching schemes can benefit from 360° video coding, we compare the caching of 360° videos encoded into multiple quality layers and tiles with layer-agnostic and tile-agnostic schemes. To cope with the fact that the content popularity distribution may be unknown, we use machine learning techniques, for both Video on Demand (VoD), and live streaming scenarios. From our findings, it is clear that by taking into account the aforementioned 360° video characteristics leads to an increased performance in terms of the quality of the video delivered to the users, and the usage of the backhaul links

    Low-latency Networking: Where Latency Lurks and How to Tame It

    Full text link
    While the current generation of mobile and fixed communication networks has been standardized for mobile broadband services, the next generation is driven by the vision of the Internet of Things and mission critical communication services requiring latency in the order of milliseconds or sub-milliseconds. However, these new stringent requirements have a large technical impact on the design of all layers of the communication protocol stack. The cross layer interactions are complex due to the multiple design principles and technologies that contribute to the layers' design and fundamental performance limitations. We will be able to develop low-latency networks only if we address the problem of these complex interactions from the new point of view of sub-milliseconds latency. In this article, we propose a holistic analysis and classification of the main design principles and enabling technologies that will make it possible to deploy low-latency wireless communication networks. We argue that these design principles and enabling technologies must be carefully orchestrated to meet the stringent requirements and to manage the inherent trade-offs between low latency and traditional performance metrics. We also review currently ongoing standardization activities in prominent standards associations, and discuss open problems for future research
    • …
    corecore