8 research outputs found

    An adaptive weighted least square support vector regression for hysteresis in piezoelectric actuators

    Full text link
    © 2017 Elsevier B.V. To overcome the low positioning accuracy of piezoelectric actuators (PZAs) caused by the hysteresis nonlinearity, this paper proposes an adaptive weighted least squares support vector regression (AWLSSVR) to model the rate-dependent hysteresis of PZA. Firstly, the AWLSSVR hyperparameters are optimized by using particle swarm optimization. Then an adaptive weighting strategy is proposed to eliminate the effects of noises in the training dataset and reduce the sample size at the same time. Finally, the proposed approach is applied to predict the hysteresis of PZA. The results show that the proposed method is more accurate than other versions of least squares support vector regression for training samples with noises, and meanwhile reduces the sample size and speeds up calculation

    Efficient DS-UWB MUD Algorithm Using Code Mapping and RVM

    Get PDF
    A hybrid multiuser detection (MUD) using code mapping and a wrong code recognition based on relevance vector machine (RVM) for direct sequence ultra wide band (DS-UWB) system is developed to cope with the multiple access interference (MAI) and the computational efficiency. A new MAI suppression mechanism is studied in the following steps: firstly, code mapping, an optimal decision function, is constructed and the output candidate code of the matched filter is mapped to a feature space by the function. In the feature space, simulation results show that the error codes caused by MAI and the single user mapped codes can be classified by a threshold which is related to SNR of the receiver. Then, on the base of code mapping, use RVM to distinguish the wrong codes from the right ones and finally correct them. Compared with the traditional MUD approaches, the proposed method can considerably improve the bit error ratio (BER) performance due to its special MAI suppression mechanism. Simulation results also show that the proposed method can approximately achieve the BER performance of optimal multiuser detection (OMD) and the computational complexity approximately equals the matched filter. Moreover, the proposed method is less sensitive to the number of users

    Motion Control of Smart Material Based Actuators: Modeling, Controller Design and Experimental Evaluation

    Get PDF
    Smart material based actuators, such as piezoelectric, magnetostrictive, and shape memory alloy actuators, are known to exhibit hysteresis effects. When the smart actuators are preceded with plants, such non-smooth nonlinearities usually lead to poor tracking performance, undesired oscillation, or even potential instability in the control systems. The development of control strategies to control the plants preceded with hysteresis actuators has become to an important research topic and imposed a great challenge in the control society. In order to mitigate the hysteresis effects, the most popular approach is to construct the inverse to compensate such effects. In such a case, the mathematical descriptions are generally required. In the literature, several mathematical hysteresis models have been proposed. The most popular hysteresis models perhaps are Preisach model, Prandtl-Ishlinskii model, and Bouc-Wen model. Among the above mentioned models, the Prandtl-Ishlinskii model has an unique property, i.e., the inverse Prandtl-Ishlinskii model can be analytically obtained, which can be used as a feedforward compensator to mitigate the hysteresis effect in the control systems. However, the shortcoming of the Prandtl-Ishlinskii model is also obvious because it can only describe a certain class of hysteresis shapes. Comparing to the Prandtl-Ishlinskii model, a generalized Prandtl-Ishlinskii model has been reported in the literature to describe a more general class of hysteresis shapes in the smart actuators. However, the inverse for the generalized Prandtl-Ishlinskii model has only been given without the strict proof due to the difficulty of the initial loading curve construction though the analytic inverse of the Prandtl-Ishlinskii model is well documented in the literature. Therefore, as a further development, the generalized Prandtl-Ishlinskii model is re-defined and a modified generalized Prandtl-Ishlinskii model is proposed in this dissertation which can still describe similar general class of hysteresis shapes. The benefit is that the concept of initial loading curve can be utilized and a strict analytical inverse model can be derived for the purpose of compensation. The effectiveness of the obtained inverse modified generalized Prandtl-Ishlinskii model has been validated in the both simulations and in experiments on a piezoelectric micropositioning stage. It is also affirmed that the proposed modified generalized Prandtl-Ishlinskii model fulfills two crucial properties for the operator based hysteresis models, the wiping out property and the congruency property. Usually the hysteresis nonlinearities in smart actuators are unknown, the direct open-loop feedforward inverse compensation will introduce notably inverse compensation error with an estimated inverse construction. A closed-loop adaptive controller is therefore required. The challenge in fusing the inverse compensation and the robust adaptive control is that the strict stability proof of the closed loop control system is difficult to obtain due to the fact that an error expression of the inverse compensation has not been established when the hysteresis is unknown. In this dissertation research, by developing the error expression of the inverse compensation for modified generalized Prandtl-Ishlinskii model, two types of inverse based robust adaptive controllers are designed for a class of uncertain systems preceded by a smart material based actuator with hysteresis nonlinearities. When the system states are available, an inverse based adaptive variable structure control approach is designed. The strict stability proof is established thereafter. Comparing with other works in the literature, the benefit for such a design is that the proposed inverse based scheme can achieve the tracking without necessarily adapting the uncertain parameters (the number could be large) in the hysteresis model, which leads to the computational efficiency. Furthermore, an inverse based adaptive output-feedback control scheme is developed when the exactly knowledge of most of the states is unavailable and the only accessible state is the output of the system. An observer is therefore constructed to estimate the unavailable states from the measurements of a single output. By taking consideration of the analytical expression of the inverse compensation error, the global stability of the close-loop control system as well as the required tracking accuracy are achieved. The effectiveness of the proposed output-feedback controller is validated in both simulations and experiments

    Positioning Control System for a Large Range 2D Platform with Submicrometre Accuracy for Metrological and Manufacturing Applications

    Get PDF
    The importance of nanotechnology in the world of Science and Technology has rapidly increased over recent decades, demanding positioning systems capable of providing accurate positioning in large working ranges. In this line of research, a nanopositioning platform, the NanoPla, has been developed at the University of Zaragoza. The NanoPla has a large working range of 50 mm × 50 mm and submicrometre accuracy. The NanoPla actuators are four Halbach linear motors and it implements planar motion. In addition, a 2D plane mirror laser interferometer system works as positioning sensor. One of the targets of the NanoPla is to implement commercial devices when possible. Therefore, a commercial control hardware designed for generic three phase motors has been selected to control and drive the Halbach linear motors.This thesis develops 2D positioning control strategy for large range accurate positioning systems and implements it in the NanoPla. The developed control system coordinates the performance of the four Halbach linear motors and integrates the 2D laser system positioning feedback. In order to improve the positioning accuracy, a self calibration procedure for the characterisation of the geometrical errors of the 2D laser system is proposed. The contributors to the final NanoPla positioning errors are analysed and the final positioning uncertainty (k=2) of the 2D control system is calculated to be ±0.5 µm. The resultant uncertainty is much lower than the NanoPla required positioning accuracy, broadening its applicability scope.<br /

    Intelligent control : a taxonomy

    Get PDF
    In this paper we highlight the stages of development towards intelligent control and define it based on literature. Furthermore, we propose a novel taxonomy of intelligent control methods which categorises these based on their level of uncertainty in three areas: the environment, the control system, and the goals. These areas are consistent with the key elements of intelligent control present in existing definitions. Using this taxonomy, we present some example intelligent control methods and their classifications to illustrate the applicability of the taxonomy

    Simultaneous-Fault Diagnosis of Automotive Engine Ignition Systems Using Prior Domain Knowledge and Relevance Vector Machine

    Get PDF
    Engine ignition patterns can be analyzed to identify the engine fault according to both the specific prior domain knowledge and the shape features of the patterns. One of the challenges in ignition system diagnosis is that more than one fault may appear at a time. This kind of problem refers to simultaneous-fault diagnosis. Another challenge is the acquisition of a large amount of costly simultaneous-fault ignition patterns for constructing the diagnostic system because the number of the training patterns depends on the combination of different single faults. The above problems could be resolved by the proposed framework combining feature extraction, probabilistic classification, and decision threshold optimization. With the proposed framework, the features of the single faults in a simultaneous-fault pattern are extracted and then detected using a new probabilistic classifier, namely, pairwise coupling relevance vector machine, which is trained with single-fault patterns only. Therefore, the training dataset of simultaneous-fault patterns is not necessary. Experimental results show that the proposed framework performs well for both single-fault and simultaneous-fault diagnoses and is superior to the existing approach

    Microfluidics and Nanofluidics Handbook

    Get PDF
    The Microfluidics and Nanofluidics Handbook: Two-Volume Set comprehensively captures the cross-disciplinary breadth of the fields of micro- and nanofluidics, which encompass the biological sciences, chemistry, physics and engineering applications. To fill the knowledge gap between engineering and the basic sciences, the editors pulled together key individuals, well known in their respective areas, to author chapters that help graduate students, scientists, and practicing engineers understand the overall area of microfluidics and nanofluidics. Topics covered include Finite Volume Method for Numerical Simulation Lattice Boltzmann Method and Its Applications in Microfluidics Microparticle and Nanoparticle Manipulation Methane Solubility Enhancement in Water Confined to Nanoscale Pores Volume Two: Fabrication, Implementation, and Applications focuses on topics related to experimental and numerical methods. It also covers fabrication and applications in a variety of areas, from aerospace to biological systems. Reflecting the inherent nature of microfluidics and nanofluidics, the book includes as much interdisciplinary knowledge as possible. It provides the fundamental science background for newcomers and advanced techniques and concepts for experienced researchers and professionals

    Principles and theory of protein-based pattern formation

    Get PDF
    Biological systems perform functions by the orchestrated interplay of many small components without a "conductor." Such self-organization pervades life on many scales, from the subcellular level to populations of many organisms and whole ecosystems. On the intracellular level, protein-based pattern formation coordinates and instructs functions like cell division, differentiation and motility. A key feature of protein-based pattern formation is that the total numbers of the involved proteins remain constant on the timescale of pattern formation. The overarching theme of this thesis is the profound impact of this mass-conservation property on pattern formation and how one can harness mass conservation to understand the underlying physical principles. The central insight is that changes in local densities shift local reactive equilibria, and thus induce concentration gradients which, in turn, drive diffusive transport of mass. For two-component systems, this dynamic interplay can be captured by simple geometric objects in the (low-dimensional) phase space of chemical concentrations. On this phase-space level, physical insight can be gained from geometric criteria and graphical constructions. Moreover, we introduce the notion of regional (in)stabilities, which allows one to characterize the dynamics in the highly nonlinear regime reveals an inherent connection between Turing instability and stimulus-induced pattern formation. The insights gained for conceptual two-component systems can be generalized to systems with more components and several conserved masses. In the minimal setting of two diffusively coupled "reactors," the full dynamics can be embedded in the phase-space of redistributed masses where the phase space flow is organized by surfaces of local reactive equilibria. Building on the phase-space analysis for two component systems, we develop a new approach to the important open problem of wavelength selection in the highly nonlinear regime. We show that two-component reaction–diffusion systems always exhibit uninterrupted coarsening (the continual growth of the characteristic length scale) of patterns if they are strictly mass conserving. Selection of a finite wavelength emerges due to weakly broken mass-conservation, or coupling to additional components, which counteract and stop the competition instability that drives coarsening. For complex dynamical phenomena like wave patterns and the transition to spatiotemporal chaos, an analysis in terms of local equilibria and their stability properties provides a powerful tool to interpret data from numerical simulations and experiments, and to reveal the underlying physical mechanisms. In collaborations with different experimental labs, we studied the Min system of Escherichia coli. A central insight from these investigations is that bulk-surface coupling imparts a strong dependence of pattern formation on the geometry of the spatial confinement, which explains the qualitatively different dynamics observed inside cells compared to in vitro reconstitutions. By theoretically studying the polarization machinery in budding yeast and testing predictions in collaboration with experimentalists, we found that this functional module implements several redundant polarization mechanisms that depend on different subsets of proteins. Taken together, our work reveals unifying principles underlying biological self-organization and elucidates how microscopic interaction rules and physical constraints collectively lead to specific biological functions.Biologische Systeme führen Funktionen durch das orchestrierte Zusammenspiel vieler kleiner Komponenten ohne einen "Dirigenten" aus. Solche Selbstorganisation durchdringt das Leben auf vielen Skalen, von der subzellulären Ebene bis zu Populationen vieler Organismen und ganzen Ökosystemen. Auf der intrazellulären Ebene koordiniert und instruieren proteinbasierte Muster Funktionen wie Zellteilung, Differenzierung und Motilität. Ein wesentliches Merkmal der proteinbasierten Musterbildung ist, dass die Gesamtzahl der beteiligten Proteine auf der Zeitskala der Musterbildung konstant bleibt. Das übergreifende Thema dieser Arbeit ist es, den tiefgreifenden Einfluss dieser Massenerhaltung auf die Musterbildung zu untersuchen und Methoden zu entwickeln, die Massenerhaltung nutzen, um die zugrunde liegenden physikalischen Prinzipien von proteinbasierter Musterbildung zu verstehen. Die zentrale Erkenntnis ist, dass Änderungen der lokalen Dichten lokale reaktive Gleichgewichte verschieben und somit Konzentrationsgradienten induzieren, die wiederum den diffusiven Transport von Masse antreiben. Für Zweikomponentensysteme kann dieses dynamische Wechselspiel durch einfache geometrische Objekte im (niedrigdimensionalen) Phasenraum der chemischen Konzentrationen erfasst werden. Auf dieser Phasenraumebene können physikalische Erkenntnisse durch geometrische Kriterien und grafische Konstruktionen gewonnen werden. Darüber hinaus führen wir den Begriff der regionalen (In-)stabilität ein, der es erlaubt, die Dynamik im hochgradig nichtlinearen Regime zu charakterisieren und einen inhärenten Zusammenhang zwischen Turing-Instabilität und stimulusinduzierter Musterbildung aufzuzeigen. Die für konzeptionelle Zweikomponentensysteme gewonnenen Erkenntnisse können auf Systeme mit mehr Komponenten und mehreren erhaltenen Massen verallgemeinert werden. In der minimalen Fassung von zwei diffusiv gekoppelten "Reaktoren" kann die gesamte Dynamik in den Phasenraum umverteilter Massen eingebettet werden, wobei der Phasenraumfluss durch Flächen lokaler reaktiver Gleichgewichte organisiert wird. Aufbauend auf der Phasenraumanalyse für Zweikomponentensysteme entwickeln wir einen neuen Ansatz für die wichtige offene Fragestellung der Wellenängenselektion im hochgradig nichtlinearen Regime. Wir zeigen, dass "coarsening" (das stetige wachsen der charakteristischen Längenskala) von Mustern in Zweikomponentensystemen nie stoppt, wenn sie exakt massenerhaltend sind. Die Selektion einer endlichen Wellenlänge entsteht durch schwach gebrochene Massenerhaltung oder durch Kopplung an zusätzliche Komponenten. Diese Prozesse wirken der Masseumverteilung, die coarsening treibt, entgegen und stoppen so das coarsening. Bei komplexen dynamischen Phänomenen wie Wellenmustern und dem Übergang zu raumzeitlichen Chaos bietet eine Analyse in Bezug auf lokale Gleichgewichte und deren Stabilitätseigenschaften ein leistungsstarkes Werkzeug, um Daten aus numerischen Simulationen und Experimenten zu interpretieren und die zugrunde liegenden physikalischen Mechanismen aufzudecken. In Zusammenarbeit mit verschiedenen experimentellen Labors haben wir das Min-System von Escherichia coli untersucht. Eine zentrale Erkenntnis aus diesen Untersuchungen ist, dass die Kopplung zwischen Volumen und Oberfläche zu einer starken Abhängigkeit der Musterbildung von der räumlichen Geometrie führt. Das erklärt die qualitativ unterschiedliche Dynamik, die in Zellen im Vergleich zu in vitro Rekonstitutionen beobachtet wird. Durch die theoretische Untersuchung der Polarisationsmaschinerie in Hefezellen, kombiniert mit experimentellen Tests theoretischer Vorhersagen, haben wir herausgefunden, dass dieses Funktionsmodul mehrere redundante Polarisationsmechanismen implementiert, die von verschiedenen Untergruppen von Proteinen abhängen. Zusammengenommen beleuchtet unsere Arbeit die vereinheitlichenden Prinzipien, die der intrazellulären Selbstorganisation zugrunde liegen, und zeigt, wie mikroskopische Interaktionsregeln und physikalische Bedingungen gemeinsam zu spezifischen biologischen Funktionen führen
    corecore