2,534 research outputs found

    Priority Auctions and Queue Disciplines that Depend on Processing Time

    Get PDF
    Lecture on the first SFB/TR 15 meeting, Gummersbach, July, 18 - 20, 2004We analyze the allocation of priority in queues via simple bidding mechanisms. In our model, the stochastically arriving customers are privately informed about their own processing time. They make bids upon arrival at a queue whose length is unobservable. We consider two bidding schemes that differ in the definition of bids (these may reflect either total payments or payments per unit of time) and in the timing of payments (before, or after service). In both schemes, a customer obtains priority over all customers (waiting in the queue or arriving while he is waiting) who make lower bids. Our main results show how the convexity/concavity of the function expressing the costs of delay determines the queue-discipline (i.e., SPT, LPT) arising in a bidding equilibrium

    Resource virtualisation of network routers

    Get PDF
    There is now considerable interest in applications that transport time-sensitive data across the best-effort Internet. We present a novel network router architecture, which has the potential to improve the Quality of Service guarantees provided to such flows. This router architecture makes use of virtual machine techniques, to assign an individual virtual routelet to each network flow requiring QoS guarantees. We describe a prototype of this virtual routelet architecture, and evaluate its effectiveness. Experimental results of the performance and flow partitioning of this prototype, compared with a standard software router, suggest promise in the virtual routelet architecture

    Priority Auctions and Queue Disciplines that Depend on Processing Time

    Get PDF
    Lecture on the first SFB/TR 15 meeting, Gummersbach, July, 18 - 20, 2004We analyze the allocation of priority in queues via simple bidding mechanisms. In our model, the stochastically arriving customers are privately informed about their own processing time. They make bids upon arrival at a queue whose length is unobservable. We consider two bidding schemes that differ in the definition of bids (these may reflect either total payments or payments per unit of time) and in the timing of payments (before, or after service). In both schemes, a customer obtains priority over all customers (waiting in the queue or arriving while he is waiting) who make lower bids. Our main results show how the convexity/concavity of the function expressing the costs of delay determines the queue-discipline (i.e., SPT, LPT) arising in a bidding equilibrium.
    corecore