17 research outputs found

    Performance Analysis of Protograph LDPC Codes over Large-Scale MIMO Channels with Low-Resolution ADCs

    Full text link
    © 2013 IEEE. Protograph LDPC (P-LDPC) codes and large-scale multiple-input multiple-output (LS-MIMO) are cornerstones of 5G and future wireless systems, thanks to their powerful error-correcting capability and high spectral efficiency. To alleviate the high complexity in signal detection/decoding that dramatically grows with the number of antennas (in the order of tens or even hundreds), low-resolution analog-to-digital converters (ADCs) and joint detection and decoding using factor graph have recently attracted paramount interest. Unlike high-resolution ADCs, by using a small number of bits to quantize the received signal, low-resolution ADCs help reduce the hardware cost and power consumption of the RF circuit of practical LS-MIMO transceivers. Such a very much desirable reduction comes at the cost of additional quantization noise, introduced by low-resolution ADCs. This work aims to provide a unified framework to analyze the impact of the low-resolution ADCs on the performance of P-LDPC codes in practical LS-MIMO systems. It is worth noting that the previous analytical tools that have been used to evaluate the performance of P-LDPC codes do not account for the quantization noise effect of the low-resolution ADCs and the fact that the covariance of quantization noise depends on the fading channels. This article addresses this shortcoming by first leveraging the additive quantization noise model. We then derive the expression of extrinsic information for the belief-propagation LS-MIMO detector. The mutual information functions, which are the core elements of our proposed protograph extrinsic information transfer (PEXIT) algorithm, are analyzed for LS-MIMO communication systems. Our proposed PEXIT algorithm allows us to analyze and predict the impact of the low-resolution ADCs on the performance of P-LDPC codes, considering various input parameters, including the LS-MIMO configuration, the code rate, and the maximum number of decoding iterations, and the code structure. Based on our extensive analytical and simulation results, we found that the performance of 3-bit and 4-bit ADC systems only have a small gap to that of the unquantized systems. Especially when the 5-bit ADC scheme is applied, the performance loss is negligible. This finding sheds light on the practical design of LS-MIMO systems using P-LDPC codes

    Signal optimization for Galileo evolution

    Get PDF
    Global Navigation Satellite System (GNSS) are present in our daily lives. Moreover, new users areemerging with further operation needs involving a constant evolution of the current navigationsystems. In the current framework of Galileo (GNSS European system) and especially within theGalileo E1 Open Service (OS), adding a new acquisition aiding signal could contribute to providehigher resilience at the acquisition phase, as well as to reduce the time to first fix (TTFF).Designing a new GNSS signal is always a trade-off between several performance figures of merit.The most relevant are the position accuracy, the sensitivity and the TTFF. However, if oneconsiders that the signal acquisition phase is the goal to design, the sensitivity and the TTFF havea higher relevance. Considering that, in this thesis it is presented the joint design of a GNSS signaland the message structure to propose a new Galileo 2nd generation signal, which provides ahigher sensitivity in the receiver and reduce the TTFF. Several aspects have been addressed inorder to design a new signal component. Firstly, the spreading modulation definition must considerthe radio frequency compatibility in order to cause acceptable level of interference inside the band.Moreover, the spreading modulation should provide good correlation properties and goodresistance against the multipath in order to enhance the receiver sensitivity and to reduce theTTFF. Secondly, the choice of the new PRN code is also crucial in order to ease the acquisitionphase. A simple model criterion based on a weighted cost function is used to evaluate the PRNcodes performance. This weighted cost function takes into account different figures of merit suchas the autocorrelation, the cross-correlation and the power spectral density. Thirdly, the design ofthe channel coding scheme is always connected with the structure of the message. A joint designbetween the message structure and the channel coding scheme can provide both, reducing theTTFF and an enhancement of the resilience of the decoded data. In this this, a new method to codesign the message structure and the channel coding scheme for the new G2G signal isproposed. This method provides the guideline to design a message structure whose the channelcoding scheme is characterized by the full diversity, the Maximum Distance Separable (MDS) andthe rate compatible properties. The channel coding is essential in order to enhance the datademodulation performance, especially in harsh environments. However, this process can be verysensitive to the correct computation of the decoder input. Significant improvements were obtainedby considering soft inputs channel decoders, through the Log Likelihood Ratio LLRs computation.However, the complete knowledge of the channel state information (CSI) was usually considered,which it is infrequently in real scenarios. In this thesis, we provide new methods to compute LLRlinear approximations, under the jamming and the block fading channels, considering somestatistical CSI. Finally, to transmit a new signal in the same carrier frequency and using the sameHigh Power Amplifier (HPA) generates constraints in the multiplexing design, since a constant orquasi constant envelope is needed in order to decrease the non-linear distortions. Moreover, themultiplexing design should provide high power efficiency to not waste the transmitted satellitepower. Considering the precedent, in this thesis, we evaluate different multiplexing methods,which search to integrate a new binary signal in the Galileo E1 band while enhancing thetransmitted power efficiency. Besides that, even if the work is focused on the Galileo E1, many ofthe concepts and methodologies can be easily extended to any GNSS signa

    Design and Analysis of GFDM-Based Wireless Communication Systems

    Get PDF
    Le multiplexage généralisé par répartition en fréquence (GFDM), une méthode de traitement par blocs de modulation multiporteuses non orthogonales, est une candidate prometteuse pour les technologies de forme d'onde pour les systèmes sans fil au-delà de la cinquième génération (5G). La capacité du GFDM à ajuster de manière flexible la taille du bloc et le type de filtres de mise en forme des impulsions en fait une méthode appropriée pour répondre à plusieurs exigences importantes, comme une faible latence, un faible rayonnement hors bande (OOB) et des débits de données élevés. En appliquant aux systèmes GFDM la technique des systèmes à entrées multiples et sorties multiples (MIMO), la technique de MIMO massif ou des codes de contrôle de parité à faible densité (LDPC), il est possible d'améliorer leurs performances. Par conséquent, l'étude de ces systèmes combinés sont d'une grande importance théorique et pratique. Dans cette thèse, nous étudions les systèmes de communication sans fil basés sur le GFDM en considérant trois aspects. Tout d'abord, nous dérivons une borne d'union sur le taux d'erreur sur les bits (BER) pour les systèmes MIMO-GFDM, technique qui est basée sur des probabilités d'erreur par paires exactes (PEP). La PEP exacte est calculée en utilisant la fonction génératrice de moments(MGF) pour les détecteurs à maximum de vraisemblance (ML). La corrélation spatiale entre les antennes et les erreurs d'estimation de canal sont prises en compte dans l'environnement de canal étudié. Deuxièmement, les estimateurs et les précodeurs de canal de faible complexité basés sur une expansion polynomiale sont proposés pour les systèmes MIMO-GFDM massifs. Des pilotes sans interférence sont utilisés pour l'estimation du canal basée sur l'erreur quadratique moyenne minimale(MMSE) pour lutter contre l'influence de la non-orthogonalité entre les sous-porteuses dans le GFDM. La complexité de calcul cubique peut être réduite à une complexité d'ordre au carré en utilisant la technique d'expansion polynomiale pour approximer les inverses de matrices dans l'estimation MMSE conventionnelle et le précodage. De plus, nous calculons les limites de performance en termes d'erreur quadratique moyenne (MSE) pour les estimateurs proposés, ce qui peut être un outil utile pour prédire la performance des estimateurs dans la région de Eₛ/N₀ élevé. Une borne inférieure de Cramér-Rao(CRLB) est dérivée pour notre modèle de système et agit comme une référence pour les estimateurs. La complexité de calcul des estimateurs de canal proposés et des précodeurs et les impacts du degré du polynôme sont également étudiés. Enfin, nous analysons les performances de la probabilité d'erreur des systèmes GFDM combinés aux codes LDPC. Nous dérivons d'abord les expressions du ratio de vraisemblance logarithmique (LLR) initiale qui sont utilisées dans le décodeur de l'algorithme de somme de produits (SPA). Ensuite, basé sur le seuil de décodage, nous estimons le taux d'erreur de trame (FER) dans la région de bas E[indice b]/N₀ en utilisant le BER observé pour modéliser les variations du canal. De plus, une borne inférieure du FER du système est également proposée basée sur des ensembles absorbants. Cette borne inférieure peut agir comme une estimation du FER dans la région de E[indice b]/N₀ élevé si l'ensemble absorbant utilisé est dominant et que sa multiplicité est connue. La quantification a également un impact important sur les performances du FER et du BER. Des codes LDPC basés sur un tableau et construit aléatoirement sont utilisés pour supporter les analyses de performances. Pour ces trois aspects, des simulations et des calculs informatiques sont effectués pour obtenir des résultats numériques connexes, qui vérifient les méthodes proposées.8 372162\u a Generalized frequency division multiplexing (GFDM) is a block-processing based non-orthogonal multi-carrier modulation scheme, which is a promising candidate waveform technology for beyond fifth-generation (5G) wireless systems. The ability of GFDM to flexibly adjust the block size and the type of pulse-shaping filters makes it a suitable scheme to meet several important requirements, such as low latency, low out-of-band (OOB) radiation and high data rates. Applying the multiple-input multiple-output (MIMO) technique, the massive MIMO technique, or low-density parity-check (LDPC) codes to GFDM systems can further improve the systems performance. Therefore, the investigation of such combined systems is of great theoretical and practical importance. This thesis investigates GFDM-based wireless communication systems from the following three aspects. First, we derive a union bound on the bit error rate (BER) for MIMO-GFDM systems, which is based on exact pairwise error probabilities (PEPs). The exact PEP is calculated using the moment-generating function (MGF) for maximum likelihood (ML) detectors. Both the spatial correlation between antennas and the channel estimation errors are considered in the investigated channel environment. Second, polynomial expansion-based low-complexity channel estimators and precoders are proposed for massive MIMO-GFDM systems. Interference-free pilots are used in the minimum mean square error (MMSE) channel estimation to combat the influence of non-orthogonality between subcarriers in GFDM. The cubic computational complexity can be reduced to square order by using the polynomial expansion technique to approximate the matrix inverses in the conventional MMSE estimation and precoding. In addition, we derive performance limits in terms of the mean square error (MSE) for the proposed estimators, which can be a useful tool to predict estimators performance in the high Eₛ/N₀ region. A Cramér-Rao lower bound (CRLB) is derived for our system model and acts as a benchmark for the estimators. The computational complexity of the proposed channel estimators and precoders, and the impacts of the polynomial degree are also investigated. Finally, we analyze the error probability performance of LDPC coded GFDM systems. We first derive the initial log-likelihood ratio (LLR) expressions that are used in the sum-product algorithm (SPA) decoder. Then, based on the decoding threshold, we estimate the frame error rate (FER) in the low E[subscript b]/N₀ region by using the observed BER to model the channel variations. In addition, a lower bound on the FER of the system is also proposed based on absorbing sets. This lower bound can act as an estimate of the FER in the high E[subscript b]/N₀ region if the absorbing set used is dominant and its multiplicity is known. The quantization scheme also has an important impact on the FER and BER performances. Randomly constructed and array-based LDPC codes are used to support the performance analyses. For all these three aspects, software-based simulations and calculations are carried out to obtain related numerical results, which verify our proposed methods
    corecore