667 research outputs found

    Distributed MAC Protocol Supporting Physical-Layer Network Coding

    Full text link
    Physical-layer network coding (PNC) is a promising approach for wireless networks. It allows nodes to transmit simultaneously. Due to the difficulties of scheduling simultaneous transmissions, existing works on PNC are based on simplified medium access control (MAC) protocols, which are not applicable to general multi-hop wireless networks, to the best of our knowledge. In this paper, we propose a distributed MAC protocol that supports PNC in multi-hop wireless networks. The proposed MAC protocol is based on the carrier sense multiple access (CSMA) strategy and can be regarded as an extension to the IEEE 802.11 MAC protocol. In the proposed protocol, each node collects information on the queue status of its neighboring nodes. When a node finds that there is an opportunity for some of its neighbors to perform PNC, it notifies its corresponding neighboring nodes and initiates the process of packet exchange using PNC, with the node itself as a relay. During the packet exchange process, the relay also works as a coordinator which coordinates the transmission of source nodes. Meanwhile, the proposed protocol is compatible with conventional network coding and conventional transmission schemes. Simulation results show that the proposed protocol is advantageous in various scenarios of wireless applications.Comment: Final versio

    Adaptive power link adaptation on DVB-T system based on picture quality feedback

    Get PDF
    In digital television systems such as DVB-T, service provider has difficulties to observe the quality of picture reception in the viewers’ television. This is due to the unavailability of quality feedback sent from viewers’ devices to the service provider. Therefore, this research proposes link adaptation method in DVB-T system based on image quality measurement at recipient side, so that service provider may adjust the transmission power in real-time to improve the image quality. Quality metric used in this research is human perception- based no-reference image quality metric, which does not need the presence of the reference frame. The quality assessment is focused on the severeness of blocking artifact, which is the dominant artifacts in MPEG video. The numerical results have shown that power adaptation could maintain good picture quality as well as transmission power efficiency at the same time on the digital television transmission system. The proposed scheme is also suitable for other DVB system as well as various digital television system standards

    Network coding-aided MAC protocols for cooperative wireless networks

    Get PDF
    The introduction of third generation (3G) technologies has caused a vast proliferation of wireless devices and networks, generating an increasing demand for high level Quality of Service (QoS). The wide spread of mobile applications has further reinforced the user need for communication, motivating at the same time the concepts of user cooperation and data dissemination. However, this trend towards continuous exchange of information and ubiquitous connectivity is inherently restricted by the energy-greedy functionalities of high-end devices. These limitations, along with the pressure exerted on the Information and Communications Technology (ICT) industry towards energy awareness, have induced the design of novel energy efficient schemes and algorithms. In this context, the Medium Access Control (MAC) layer plays a key role, since it is mainly responsible for the channel access regulation, the transmission scheduling and the resource allocation, thus constituting an appropriate point to effectively address energy efficiency issues that arise due to the users overcrowding. This dissertation provides a contribution to the design, analysis and evaluation of novel MAC protocols for cooperative wireless networks. In our attempt to design energy efficient MAC schemes, we were extensively assisted by the introduction of new techniques, such as Network Coding (NC), that intrinsically bring considerable gains in system performance. The main thesis contributions are divided into two parts. The first part presents NCCARQ, a novel NC-aided Cooperative Automatic Repeat reQuest (ARQ) MAC protocol for wireless networks. NCCARQ introduces a new access paradigm for cooperative ARQ schemes, exploiting NC benefits in bidirectional communication among wireless users. The NCCARQ performance in terms of QoS and energy efficiency is assessed by means of analytical probabilistic models and extensive computer-based simulations, revealing the significant gains we can achieve compared to standardized MAC solutions. In addition, the impact of realistic wireless channel conditions on the MAC protocol operation further motivated us to study the NCCARQ performance in wireless links affected by correlated shadowing, showing that the channel correlation may adversely affect the distributed cooperation benefits. The second part of the thesis is dedicated to the investigation of MAC issues in wireless data dissemination scenarios. In particular, the existence of multiple source nodes in such scenarios generates conflicting situations, considering the selfish behavior of the wireless devices that want to maximize their battery lifetime. Bearing in mind the energy efficiency importance, we propose game theoretic medium access strategies, applying energy-based utility functions which inherently imply energy awareness. In addition, Random Linear NC (RLNC) techniques are adopted to eliminate the need of exchanging excessive control packets, while Analog NC (ANC) is employed to efface the impact of collisions throughout the communication. During the elaboration of this thesis, two general key conclusions have been extracted. First, there is a fundamental requirement for implementation of new MAC protocols in order to effectively deal with state-of-the-art techniques (e.g., NC), recently introduced to enhance both the performance and the energy efficiency of the network. Second, we highlight the importance of designing novel energy efficient MAC protocols, taking into account that traditional approaches - designed mainly to assist the collision avoidance in wireless networks - tend to be obsolete.La presente tesis doctoral contribuye al diseño, análisis y evaluación de nuevos protocolos MAC cooperativos para redes inalámbricas. La introducción de nuevas técnicas, tales como la codificación de red (NC), que intrínsecamente llevan un considerable aumento en el rendimiento del sistema, nos ayudó ampliamente durante el diseño de protocolos MAC energéticamente eficientes. Las principales contribuciones de esta tesis se dividen en dos partes. La primera parte presenta el NCCARQ, un protocolo cooperativo de retransmisión automática (ARQ), asistido por NC para redes inalámbricas. La segunda parte de la tesis se centra en el diseño de protocolos de capa MAC en escenarios inalámbricos de difusión de datos. Teniendo en cuenta la importancia de la eficiencia energética, se proponen técnicas de acceso al medio basadas en teoría de juegos dónde las funciones objetivo están motivadas por el consumo energético. Las soluciones propuestas son evaluadas por medio de modelos analíticos y simulaciones por ordenador

    SWIFT: A Narrowband-Friendly Cognitive Wideband Network

    Get PDF
    Wideband technologies in the unlicensed spectrum can satisfy the ever-increasing demands for wireless bandwidth created by emerging rich media applications. The key challenge for such systems, however, is to allow narrowband technologies that share these bands (say, 802.11 a/b/g/n, Zigbee) to achieve their normal performance, without compromising the throughput or range of the wideband network.This paper presents SWIFT, the first system where high-throughput wideband nodes are shown in a working deployment to coexist with unknown narrowband devices, while forming a network of their own. Prior work avoids narrowband devices by operating below the noise level and limiting itself to a single contiguous unused band. While this achieves coexistence, it sacrifices the throughput and operating distance of the wideband device. In contrast, SWIFT creates high throughput wireless links by weaving together non-contiguous unused frequency bands that change as narrowband devices enter or leave the environment. This design principle of cognitive aggregation allows SWIFT to achieve coexistence, while operating at normal power, and thereby obtaining higher throughput and greater operating range. We implement SWIFT on a wideband hardware platform, and evaluate it in the presence of 802.11 devices. In comparison to a baseline that coexists with narrowband devices by operating below their noise level, SWIFT is equally narrowband-friendly but achieves 3.6x-10.5x higher throughput and 6x greater range

    Database-assisted spectrum sharing in satellite communications:A survey

    Get PDF
    This survey paper discusses the feasibility of sharing the spectrum between satellite telecommunication networks and terrestrial and other satellite networks on the basis of a comprehensive study carried out as part of the European Space Agency's (ESA) Advanced Research in Telecommunications Systems (ARTES) programme. The main area of investigation is the use of spectrum databases to enable a controlled sharing environment. Future satellite systems can largely benefit from the ability to access spectrum bands other than the dedicated licensed spectrum band. Potential spectrum sharing scenarios are classified as: a) secondary use of the satellite spectrum by terrestrial systems, b) satellite system as a secondary user of spectrum, c) extension of a terrestrial network by using the satellite network, and d) two satellite systems sharing the same spectrum. We define practical use cases for each scenario and identify suitable techniques. The proposed scenarios and use cases cover several frequency bands and satellite orbits. Out of all the scenarios reviewed, owing to the announcement of many different mega-constellation satellite networks, we focus on analysing the feasibility of spectrum sharing between geostationary orbit (GSO) and non-geostationary orbit (NGSO) satellite systems. The performance is primarily analysed on the basis of widely accepted recommendations of the Radiocommunications Sector of the International Telecommunications Union (ITU-R). Finally, future research directions are identified

    IoT-based management platform for real-time spectrum and energy optimization of broadcasting networks

    Get PDF
    We investigate the feasibility of Internet of Things (IoT) technology to monitor and improve the energy efficiency and spectrum usage efficiency of broadcasting networks in the Ultra-High Frequency (UHF) band. Traditional broadcasting networks are designed with a fixed radiated power to guarantee a certain service availability. However, excessive fading margins often lead to inefficient spectrum usage, higher interference, and power consumption. We present an IoT-based management platform capable of dynamically adjusting the broadcasting network radiated power according to the current propagation conditions. We assess the performance and benchmark two IoT solutions (i.e., LoRa and NB-IoT). By means of the IoT management platform the broadcasting network with adaptive radiated power reduces the power consumption by 15% to 16.3% and increases the spectrum usage efficiency by 32% to 35% (depending on the IoT platform). The IoT feedback loop power consumption represents less than 2% of the system power consumption. In addition, white space spectrum availability for secondary wireless telecommunications services is increased by 34% during 90% of the time
    corecore