1,334 research outputs found

    Secrecy Wireless Information and Power Transfer in Fading Wiretap Channel

    Full text link
    Simultaneous wireless information and power transfer (SWIPT) has recently drawn significant interests for its dual use of radio signals to provide wireless data and energy access at the same time. However, a challenging secrecy communication issue arises as the messages sent to the information receivers (IRs) may be eavesdropped by the energy receivers (ERs), which are presumed to harvest energy only from the received signals. To tackle this problem, we propose in this paper an artificial noise (AN) aided transmission scheme to facilitate the secrecy information transmission to IRs and yet meet the energy harvesting requirement for ERs, under the assumption that the AN can be cancelled at IRs but not at ERs. Specifically, the proposed scheme splits the transmit power into two parts, to send the confidential message to the IR and an AN to interfere with the ER, respectively. Under a simplified three-node wiretap channel setup, the transmit power allocations and power splitting ratios over fading channels are jointly optimized to minimize the outage probability for delay-limited secrecy information transmission, or to maximize the average rate for no-delay-limited secrecy information transmission, subject to a combination of average and peak power constraints at the transmitter as well as an average energy harvesting constraint at the ER. Both the secrecy outage probability minimization and average rate maximization problems are shown to be non-convex, for each of which we propose the optimal solution based on the dual decomposition as well as suboptimal solution based on the alternating optimization. Furthermore, two benchmark schemes are introduced for comparison. Finally, the performances of proposed schemes are evaluated by simulations in terms of various trade-offs for wireless (secrecy) information versus energy transmissions.Comment: to appear in IEEE Transactions on Vehicular Technolog

    Rate-Splitting Robustness in Multi-Pair Massive MIMO Relay Systems

    Get PDF
    Relay systems improve both coverage and system capacity. Toward this direction, a full-duplex (FD) technology, being able to boost the spectral efficiency by transmitting and receiving simultaneously on the same frequency and time resources, is envisaged to play a key role in future networks. However, its benefits come at the expense of self-interference (SI) from their own transmit signal. At the same time, massive multiple-input massive multiple-output systems, bringing unconventionally many antennas, emerge as a promising technology with huge degrees-of-freedom. To this end, this paper considers a multi-pair decode-and-forward FD relay channel, where the relay station is deployed with a large number of antennas. Moreover, the rate-splitting (RS) transmission has recently been shown to provide significant performance benefits in various multi-user scenarios with imperfect channel state information at the transmitter (CSIT). Engaging the RS approach, we employ the deterministic equivalent analysis to derive the corresponding sum-rates in the presence of interferences. Initially, numerical results demonstrate the robustness of RS in half-duplex (HD) systems, since the achievable sum-rate increases without bound, i.e., it does not saturate at high signal-to-noise ratio. Next, we tackle the detrimental effect of SI in FD. In particular, and most importantly, not only FD outperforms HD, but also RS enables increasing the range of SI over which FD outperforms HD. Furthermore, increasing the number of relay station antennas, RS appears to be more efficacious due to imperfect CSIT, since SI decreases. Interestingly, increasing the number of users, the efficiency of RS worsens and its implementation becomes less favorable under these conditions. Finally, we verify that the proposed DEs, being accurate for a large number of relay station antennas, are tight approximations even for realistic system dimensions.Peer reviewedFinal Accepted Versio
    • …
    corecore