792 research outputs found

    Vector Broadcast Channels: Optimality of Threshold Feedback Policies

    Full text link
    Beamforming techniques utilizing only partial channel state information (CSI) has gained popularity over other communication strategies requiring perfect CSI thanks to their lower feedback requirements. The amount of feedback in beamforming based communication systems can be further reduced through selective feedback techniques in which only the users with channels good enough are allowed to feed back by means of a decentralized feedback policy. In this paper, we prove that thresholding at the receiver is the rate-wise optimal decentralized feedback policy for feedback limited systems with prescribed feedback constraints. This result is highly adaptable due to its distribution independent nature, provides an analytical justification for the use of threshold feedback policies in practical systems, and reinforces previous work analyzing threshold feedback policies as a selective feedback technique without proving its optimality. It is robust to selfish unilateral deviations. Finally, it reduces the search for rate-wise optimal feedback policies subject to feedback constraints from function spaces to a finite dimensional Euclidean space.Comment: Submitted to IEEE International Symposium on Information Theory, St. Petersburg, Russia, Aug 201

    A spatial interference minimization strategy for the correlated LTE downlink channel

    Get PDF

    Large System Analysis of Power Normalization Techniques in Massive MIMO

    Get PDF
    Linear precoding has been widely studied in the context of Massive multiple-input-multiple-output (MIMO) together with two common power normalization techniques, namely, matrix normalization (MN) and vector normalization (VN). Despite this, their effect on the performance of Massive MIMO systems has not been thoroughly studied yet. The aim of this paper is to fulfill this gap by using large system analysis. Considering a system model that accounts for channel estimation, pilot contamination, arbitrary pathloss, and per-user channel correlation, we compute tight approximations for the signal-to-interference-plus-noise ratio and the rate of each user equipment in the system while employing maximum ratio transmission (MRT), zero forcing (ZF), and regularized ZF precoding under both MN and VN techniques. Such approximations are used to analytically reveal how the choice of power normalization affects the performance of MRT and ZF under uncorrelated fading channels. It turns out that ZF with VN resembles a sum rate maximizer while it provides a notion of fairness under MN. Numerical results are used to validate the accuracy of the asymptotic analysis and to show that in Massive MIMO, non-coherent interference and noise, rather than pilot contamination, are often the major limiting factors of the considered precoding schemes.Comment: 12 pages, 3 figures, Accepted for publication in the IEEE Transactions on Vehicular Technolog
    corecore