1,027 research outputs found

    Non-local Attention Optimized Deep Image Compression

    Full text link
    This paper proposes a novel Non-Local Attention Optimized Deep Image Compression (NLAIC) framework, which is built on top of the popular variational auto-encoder (VAE) structure. Our NLAIC framework embeds non-local operations in the encoders and decoders for both image and latent feature probability information (known as hyperprior) to capture both local and global correlations, and apply attention mechanism to generate masks that are used to weigh the features for the image and hyperprior, which implicitly adapt bit allocation for different features based on their importance. Furthermore, both hyperpriors and spatial-channel neighbors of the latent features are used to improve entropy coding. The proposed model outperforms the existing methods on Kodak dataset, including learned (e.g., Balle2019, Balle2018) and conventional (e.g., BPG, JPEG2000, JPEG) image compression methods, for both PSNR and MS-SSIM distortion metrics

    A new multistage lattice vector quantization with adaptive subband thresholding for image compression

    Get PDF
    Lattice vector quantization (LVQ) reduces coding complexity and computation due to its regular structure. A new multistage LVQ (MLVQ) using an adaptive subband thresholding technique is presented and applied to image compression. The technique concentrates on reducing the quantization error of the quantized vectors by "blowing out" the residual quantization errors with an LVQ scale factor. The significant coefficients of each subband are identified using an optimum adaptive thresholding scheme for each subband. A variable length coding procedure using Golomb codes is used to compress the codebook index which produces a very efficient and fast technique for entropy coding. Experimental results using the MLVQ are shown to be significantly better than JPEG 2000 and the recent VQ techniques for various test images

    A new multistage lattice vector quantization with adaptive subband thresholding for image compression

    Get PDF
    Lattice vector quantization (LVQ) reduces coding complexity and computation due to its regular structure. A new multistage LVQ (MLVQ) using an adaptive subband thresholding technique is presented and applied to image compression. The technique concentrates on reducing the quantization error of the quantized vectors by "blowing out" the residual quantization errors with an LVQ scale factor. The significant coefficients of each subband are identified using an optimum adaptive thresholding scheme for each subband. A variable length coding procedure using Golomb codes is used to compress the codebook index which produces a very efficient and fast technique for entropy coding. Experimental results using the MLVQ are shown to be significantly better than JPEG 2000 and the recent VQ techniques for various test images

    Geometry Compression of 3D Static Point Clouds based on TSPLVQ

    Get PDF
    International audienceIn this paper, we address the challenging problem of the 3D point cloud compression required to ensure efficient transmission and storage. We introduce a new hierarchical geometry representation based on adaptive Tree-Structured Point-Lattice Vector Quantization (TSPLVQ). This representation enables hierarchically structured 3D content that improves the compression performance for static point cloud. The novelty of the proposed scheme lies in adaptive selection of the optimal quantization scheme of the geometric information, that better leverage the intrinsic correlations in point cloud. Based on its adaptive and multiscale structure, two quantization schemes are dedicated to project recursively the 3D point clouds into a series of embedded truncated cubic lattices. At each step of the process, the optimal quantization scheme is selected according to a rate-distortion cost in order to achieve the best trade-off between coding rate and geometry distortion, such that the compression flexibility and performance can be greatly improved. Experimental results show the interest of the proposed multi-scale method for lossy compression of geometry

    G-VAE: A Continuously Variable Rate Deep Image Compression Framework

    Full text link
    Rate adaption of deep image compression in a single model will become one of the decisive factors competing with the classical image compression codecs. However, until now, there is no perfect solution that neither increases the computation nor affects the compression performance. In this paper, we propose a novel image compression framework G-VAE (Gained Variational Autoencoder), which could achieve continuously variable rate in a single model. Unlike the previous solutions that encode progressively or change the internal unit of the network, G-VAE only adds a pair of gain units at the output of encoder and the input of decoder. It is so concise that G-VAE could be applied to almost all the image compression methods and achieve continuously variable rate with negligible additional parameters and computation. We also propose a new deep image compression framework, which outperforms all the published results on Kodak datasets in PSNR and MS-SSIM metrics. Experimental results show that adding a pair of gain units will not affect the performance of the basic models while endowing them with continuously variable rate

    BLADE: Filter Learning for General Purpose Computational Photography

    Full text link
    The Rapid and Accurate Image Super Resolution (RAISR) method of Romano, Isidoro, and Milanfar is a computationally efficient image upscaling method using a trained set of filters. We describe a generalization of RAISR, which we name Best Linear Adaptive Enhancement (BLADE). This approach is a trainable edge-adaptive filtering framework that is general, simple, computationally efficient, and useful for a wide range of problems in computational photography. We show applications to operations which may appear in a camera pipeline including denoising, demosaicing, and stylization
    • …
    corecore