9,121 research outputs found

    Performance evaluation of multicast networks and service differentiation mechanisms in IP networks

    Get PDF
    The performance of a communication network depends on how well the network is designed in terms of delivering the level of service required by a given type of traffic. The field of teletraffic theory is concerned with quantifying the three-way relationship between the network, its level of service and the traffic arriving at the network. In this thesis, we study three different problems concerning this three-way relationship and present models to assist in designing and dimensioning networks to satisfy the different quality of service demands. In the first part of the thesis, we consider service differentiation mechanisms in packet-switched IP networks implementing a Differentiated Services (DiffServ) architecture. We study how bandwidth can be divided in a weighted fair manner between persistent elastic TCP flows, and between these TCP flows and streaming real-time UDP flows. To this end, we model the traffic conditioning and scheduling mechanisms on the packet and the flow level. We also model the interaction of these DiffServ mechanisms with the TCP congestion control mechanism and present closed-loop models for the sending rate of a TCP flow that reacts to congestion signals from the network. In the second part, we concentrate on non-persistent elastic TCP traffic in IP networks and study how flows can be differentiated in terms of mean delay by giving priority to flows based on their age. We study Multi Level Processor Sharing (MLPS) disciplines, where jobs are classified into levels based on their age or attained service. Between levels, a strict priority discipline is applied; the level containing the youngest jobs has the highest priority. Inside a particular level, any scheduling discipline could be used. We present an implementation proposal of a two-level discipline, PS+PS, with the Processor Sharing discipline used inside both levels. We prove that, as long as the hazard rate of the job-size distribution is decreasing, which is the case for Internet traffic, PS+PS, and any MLPS discipline that favors young jobs, is better than PS with respect to overall mean delay. In the final part, we study distribution-type streaming traffic in a multicast network, where there is, at most, one copy of each channel transmission in each network link, and quantify the blocking probability. We derive an exact blocking probability algorithm for multicast traffic in a tree network based on the convolution and truncation algorithm for unicast traffic. We present a new convolution operation, the OR-convolution, to suit the transmission principle of multicast traffic, and a new truncation operator to take into account the case of having both unicast and multicast traffic in the network. We also consider different user models derived from the single-user model.reviewe

    Multipath streaming: fundamental limits and efficient algorithms

    Get PDF
    We investigate streaming over multiple links. A file is split into small units called chunks that may be requested on the various links according to some policy, and received after some random delay. After a start-up time called pre-buffering time, received chunks are played at a fixed speed. There is starvation if the chunk to be played has not yet arrived. We provide lower bounds (fundamental limits) on the starvation probability of any policy. We further propose simple, order-optimal policies that require no feedback. For general delay distributions, we provide tractable upper bounds for the starvation probability of the proposed policies, allowing to select the pre-buffering time appropriately. We specialize our results to: (i) links that employ CSMA or opportunistic scheduling at the packet level, (ii) links shared with a primary user (iii) links that use fair rate sharing at the flow level. We consider a generic model so that our results give insight into the design and performance of media streaming over (a) wired networks with several paths between the source and destination, (b) wireless networks featuring spectrum aggregation and (c) multi-homed wireless networks.Comment: 24 page

    Control Plane Strategies for Elastic Optical Networks

    Get PDF

    A Structural Solution to Roaming in Europe

    Get PDF
    This paper suggests that international roaming markets suffer from structural flaws in the way that roaming agreements are established in Europe. The initial roaming interventions by the European Commission in 2007 have been very welfare enhancing and the transfer of producer surplus to consumers has brought significant benefits to end users. Nevertheless, there are clear opportunity costs of maintaining and/or extending the current roaming Regulation. The price for wholesale roaming services in a given country is driven principally by the amount of traffic that an operator is willing to send back to the country requesting a price offer and not on the basis of the roaming services requested. The paper suggests that by breaking the link between the prices offered in one country and the volume of returned traffic will enable the wholesale market for international roaming to operate competitively. It is further suggested that retail price regulation is unwarranted when the wholesale market can operate competitively irrespective of the issue of the retail elasticity of demand for these services. Preliminary, suggestions are put forward as to how policy makers could transition from the current regime to a future market based regime by putting a number of required enablers in place.Roaming regulation, mobile telephony, European single market

    Evaluating system architectures for driving range estimation and charge planning for electric vehicles

    Get PDF
    Due to sparse charging infrastructure and short driving ranges, drivers of battery electric vehicles (BEVs) can experience range anxiety, which is the fear of stranding with an empty battery. To help eliminate range anxiety and make BEVs more attractive for customers, accurate range estimation methods need to be developed. In recent years, many publications have suggested machine learning algorithms as a fitting method to achieve accurate range estimations. However, these algorithms use a large amount of data and have high computational requirements. A traditional placement of the software within a vehicle\u27s electronic control unit could lead to high latencies and thus detrimental to user experience. But since modern vehicles are connected to a backend, where software modules can be implemented, high latencies can be prevented with intelligent distribution of the algorithm parts. On the other hand, communication between vehicle and backend can be slow or expensive. In this article, an intelligent deployment of a range estimation software based on ML is analyzed. We model hardware and software to enable performance evaluation in early stages of the development process. Based on simulations, different system architectures and module placements are then analyzed in terms of latency, network usage, energy usage, and cost. We show that a distributed system with cloud‐based module placement reduces the end‐to‐end latency significantly, when compared with a traditional vehicle‐based placement. Furthermore, we show that network usage is significantly reduced. This intelligent system enables the application of complex, but accurate range estimation with low latencies, resulting in an improved user experience, which enhances the practicality and acceptance of BEVs

    Router-based algorithms for improving internet quality of service.

    Get PDF
    We begin this thesis by generalizing some results related to a recently proposed positive system model of TCP congestion control algorithms. Then, motivated by a mean ¯eld analysis of the positive system model, a novel, stateless, queue management scheme is designed: Multi-Level Comparisons with index l (MLC(l)). In the limit, MLC(l) enforces max-min fairness in a network of TCP flows. We go further, showing that counting past drops at a congested link provides su±cient information to enforce max-min fairness among long-lived flows and to reduce the flow completion times of short-lived flows. Analytical models are presented, and the accuracy of predictions are validated by packet level ns2 simulations. We then move our attention to e±cient measurement and monitoring techniques. A small active counter architecture is presented that addresses the problem of accurate approximation of statistics counter values at very-high speeds that can be both updated and estimated on a per-packet basis. These algorithms are necessary in the design of router-based flow control algorithms since on-chip Static RAM (SRAM) currently is a scarce resource, and being economical with its usage is an important task. A highly scalable method for heavy-hitter identifcation that uses our small active counters architecture is developed based on heuristic argument. Its performance is compared to several state-of-the-art algorithms and shown to out-perform them. In the last part of the thesis we discuss the delay-utilization tradeoff in the congested Internet links. While several groups of authors have recently analyzed this tradeoff, the lack of realistic assumption in their models and the extreme complexity in estimation of model parameters, reduces their applicability at real Internet links. We propose an adaptive scheme that regulates the available queue space to keep utilization at desired, high, level. As a consequence, in large-number-of-users regimes, sacrifcing 1-2% of bandwidth can result in queueing delays that are an order of magnitude smaller than in the standard BDP-buŸering case. We go further and introduce an optimization framework for describing the problem of interest and propose an online algorithm for solving it

    Router-based algorithms for improving internet quality of service.

    Get PDF
    We begin this thesis by generalizing some results related to a recently proposed positive system model of TCP congestion control algorithms. Then, motivated by a mean ¯eld analysis of the positive system model, a novel, stateless, queue management scheme is designed: Multi-Level Comparisons with index l (MLC(l)). In the limit, MLC(l) enforces max-min fairness in a network of TCP flows. We go further, showing that counting past drops at a congested link provides su±cient information to enforce max-min fairness among long-lived flows and to reduce the flow completion times of short-lived flows. Analytical models are presented, and the accuracy of predictions are validated by packet level ns2 simulations. We then move our attention to e±cient measurement and monitoring techniques. A small active counter architecture is presented that addresses the problem of accurate approximation of statistics counter values at very-high speeds that can be both updated and estimated on a per-packet basis. These algorithms are necessary in the design of router-based flow control algorithms since on-chip Static RAM (SRAM) currently is a scarce resource, and being economical with its usage is an important task. A highly scalable method for heavy-hitter identifcation that uses our small active counters architecture is developed based on heuristic argument. Its performance is compared to several state-of-the-art algorithms and shown to out-perform them. In the last part of the thesis we discuss the delay-utilization tradeoff in the congested Internet links. While several groups of authors have recently analyzed this tradeoff, the lack of realistic assumption in their models and the extreme complexity in estimation of model parameters, reduces their applicability at real Internet links. We propose an adaptive scheme that regulates the available queue space to keep utilization at desired, high, level. As a consequence, in large-number-of-users regimes, sacrifcing 1-2% of bandwidth can result in queueing delays that are an order of magnitude smaller than in the standard BDP-buŸering case. We go further and introduce an optimization framework for describing the problem of interest and propose an online algorithm for solving it

    Congestion Control using FEC for Conversational Multimedia Communication

    Full text link
    In this paper, we propose a new rate control algorithm for conversational multimedia flows. In our approach, along with Real-time Transport Protocol (RTP) media packets, we propose sending redundant packets to probe for available bandwidth. These redundant packets are Forward Error Correction (FEC) encoded RTP packets. A straightforward interpretation is that if no losses occur, the sender can increase the sending rate to include the FEC bit rate, and in the case of losses due to congestion the redundant packets help in recovering the lost packets. We also show that by varying the FEC bit rate, the sender is able to conservatively or aggressively probe for available bandwidth. We evaluate our FEC-based Rate Adaptation (FBRA) algorithm in a network simulator and in the real-world and compare it to other congestion control algorithms

    Dynamic bandwidth allocation in multi-class IP networks using utility functions.

    Get PDF
    PhDAbstact not availableFujitsu Telecommunications Europe Lt
    • 

    corecore