1,274 research outputs found

    A perpetual switching system in pulmonary capillaries

    Get PDF
    Of the 300 billion capillaries in the human lung, a small fraction meet normal oxygen requirements at rest, with the remainder forming a large reserve. The maximum oxygen demands of the acute stress response require that the reserve capillaries are rapidly recruited. To remain primed for emergencies, the normal cardiac output must be parceled throughout the capillary bed to maintain low opening pressures. The flow-distributing system requires complex switching. Because the pulmonary microcirculation contains contractile machinery, one hypothesis posits an active switching system. The opposing hypothesis is based on passive switching that requires no regulation. Both hypotheses were tested ex vivo in canine lung lobes. The lobes were perfused first with autologous blood, and capillary switching patterns were recorded by videomicroscopy. Next, the vasculature of the lobes was saline flushed, fixed by glutaraldehyde perfusion, flushed again, and then reperfused with the original, unfixed blood. Flow patterns through the same capillaries were recorded again. The 16-min-long videos were divided into 4-s increments. Each capillary segment was recorded as being perfused if at least one red blood cell crossed the entire segment. Otherwise it was recorded as unperfused. These binary measurements were made manually for each segment during every 4 s throughout the 16-min recordings of the fresh and fixed capillaries (>60,000 measurements). Unexpectedly, the switching patterns did not change after fixation. We conclude that the pulmonary capillaries can remain primed for emergencies without requiring regulation: no detectors, no feedback loops, and no effectors-a rare system in biology. NEW & NOTEWORTHY The fluctuating flow patterns of red blood cells within the pulmonary capillary networks have been assumed to be actively controlled within the pulmonary microcirculation. Here we show that the capillary flow switching patterns in the same network are the same whether the lungs are fresh or fixed. This unexpected observation can be successfully explained by a new model of pulmonary capillary flow based on chaos theory and fractal mathematics

    Data compression for full motion video transmission

    Get PDF
    Clearly transmission of visual information will be a major, if not dominant, factor in determining the requirements for, and assessing the performance of the Space Exploration Initiative (SEI) communications systems. Projected image/video requirements which are currently anticipated for SEI mission scenarios are presented. Based on this information and projected link performance figures, the image/video data compression requirements which would allow link closure are identified. Finally several approaches which could satisfy some of the compression requirements are presented and possible future approaches which show promise for more substantial compression performance improvement are discussed

    Utilisation of intensive foraging zones by female Australian fur seals.

    Get PDF
    Within a heterogeneous environment, animals must efficiently locate and utilise foraging patches. One way animals can achieve this is by increasing residency times in areas where foraging success is highest (area-restricted search). For air-breathing diving predators, increased patch residency times can be achieved by altering both surface movements and diving patterns. The current study aimed to spatially identify the areas where female Australian fur seals allocated the most foraging effort, while simultaneously determining the behavioural changes that occur when they increase their foraging intensity. To achieve this, foraging behaviour was successfully recorded with a FastLoc GPS logger and dive behaviour recorder from 29 individual females provisioning pups. Females travelled an average of 118 ± 50 km from their colony during foraging trips that lasted 7.3 ± 3.4 days. Comparison of two methods for calculating foraging intensity (first-passage time and first-passage time modified to include diving behaviour) determined that, due to extended surface intervals where individuals did not travel, inclusion of diving behaviour into foraging analyses was important for this species. Foraging intensity 'hot spots' were found to exist in a mosaic of patches within the Bass Basin, primarily to the south-west of the colony. However, the composition of benthic habitat being targeted remains unclear. When increasing their foraging intensity, individuals tended to perform dives around 148 s or greater, with descent/ascent rates of approximately 1.9 m•s-1 or greater and reduced postdive durations. This suggests individuals were maximising their time within the benthic foraging zone. Furthermore, individuals increased tortuosity and decreased travel speeds while at the surface to maximise their time within a foraging location. These results suggest Australian fur seals will modify both surface movements and diving behaviour to maximise their time within a foraging patch

    Continuous behavioural 'switching' in human spermatozoa and its regulation by Ca<sup>2+</sup>-mobilising stimuli

    Get PDF
    Human sperm show a variety of different behaviours (types of motility) that have different functional roles. Previous reports suggest that sperm may reversibly switch between these behaviours. We have recorded and analysed the behaviour of individual human sperm (180 cells in total), each cell monitored continuously for 3-3.5 min either under control conditions or in the presence of Ca2+-mobilising stimuli. Switching between different behaviours was assessed visually (1 s bins using four behaviour categories), and was verified by fractal dimension analysis of sperm head tracks. In the absence of stimuli, ~90% of cells showed at least one behavioural transition (mean rate under control conditions = 6.4 ± 0.8 transitions.min-1). Type 1 behaviour (progressive, activated-like motility) was most common, but the majority of cells (>70%) displayed at least three behaviour types. Treatment of sperm with Ca2+-mobilising agonists had negligible effects on the rate of switching but increased the time spent in type 2 and type 3 (hyperactivation-like) behaviours (P < 2∗10-8; chi-square). Treatment with 4-aminopyridine under alkaline conditions (pHo = 8.5), a highly-potent Ca2+-mobilising stimulus, was the most effective in increasing the proportion of type 3 behaviour, biasing switching away from type 1 (P < 0.005) and dramatically extending the duration of type 3 events (P < 10-16). Other stimuli, including 300 nM progesterone and 1% human follicular fluid, had qualitatively similar effects but were less potent. We conclude that human sperm observed in vitro constitutively display a range of behaviours and regulation of motility by [Ca2+]i, at the level of the single cell, is achieved not by causing cells to adopt a 'new' behaviour but by changing the relative contributions of those behaviours.Fil: Achikanu, Cosmas. University of Birmingham; Reino UnidoFil: Correia, Joao. University of Birmingham; Reino UnidoFil: Guidobaldi, Héctor Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Centro de Biología Celular y Molecular; ArgentinaFil: Giojalas, Laura Cecilia. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Centro de Biología Celular y Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; ArgentinaFil: Barratt, Christopher. University of Dundee; Reino UnidoFil: Da Silva, Sarah Martins. University of Dundee; Reino UnidoFil: Publicover, Stephen. University of Birmingham; Reino Unid

    Neurophysiological effects of human-derived pathological tau conformers in the APPKM670/671NL.PS1/L166P amyloid mouse model of Alzheimer's disease

    Get PDF
    Alzheimer's Disease (AD) is a neurodegenerative disease characterized by two main pathological hallmarks: amyloid plaques and intracellular tau neurofibrillary tangles. However, a majority of studies focus on the individual pathologies and seldom on the interaction between the two pathologies. Herein, we present the longitudinal neuropathological and neurophysiological effects of a combined amyloid-tau model by hippocampal seeding of human-derived tau pathology in the APP.PS1/L166P amyloid animal model. We statistically assessed both neurophysiological and pathological changes using linear mixed modelling to determine if factors such as the age at which animals were seeded, genotype, seeding or buffer, brain region where pathology was quantified, and time-post injection differentially affect these outcomes. We report that AT8-positive tau pathology progressively develops and is facilitated by the amount of amyloid pathology present at the time of injection. The amount of AT8-positive tau pathology was influenced by the interaction of age at which the animal was injected, genotype, and time after injection. Baseline pathology-related power spectra and Higuchi Fractal Dimension (HFD) score alterations were noted in APP.PS1/L166P before any manipulations were performed, indicating a baseline difference associated with genotype. We also report immediate localized hippocampal dysfunction in the electroencephalography (EEG) power spectra associated with tau seeding which returned to comparable levels at 1 month-post-injection. Longitudinal effects of seeding indicated that tau-seeded wild-type mice showed an increase in gamma power earlier than buffer control comparisons which was influenced by the age at which the animal was injected. A reduction of hippocampal broadband power spectra was noted in tau-seeded wild-type mice, but absent in APP.PS1 animals. HFD scores appeared to detect subtle effects associated with tau seeding in APP.PS1 animals, which was differentially influenced by genotype. Notably, while tau histopathological changes were present, a lack of overt longitudinal electrophysiological alterations was noted, particularly in APP.PS1 animals that feature both pathologies after seeding, reiterating and underscoring the difficulty and complexity associated with elucidating physiologically relevant and translatable biomarkers of Alzheimer's Disease at the early stages of the disease

    Deep Pipeline Architecture for Fast Fractal Color Image Compression Utilizing Inter-Color Correlation

    Get PDF
    Fractal compression technique is a well-known technique that encodes an image by mapping the image into itself and this requires performing a massive and repetitive search. Thus, the encoding time is too long, which is the main problem of the fractal algorithm. To reduce the encoding time, several hardware implementations have been developed. However, they are generally developed for grayscale images, and using them to encode colour images leads to doubling the encoding time 3× at least. Therefore, in this paper, new high-speed hardware architecture is proposed for encoding RGB images in a short time. Unlike the conventional approach of encoding the colour components similarly and individually as a grayscale image, the proposed method encodes two of the colour components by mapping them directly to the most correlated component with a searchless encoding scheme, while the third component is encoded with a search-based scheme. This results in reducing the encoding time and also in increasing the compression rate. The parallel and deep-pipelining approaches have been utilized to improve the processing time significantly. Furthermore, to reduce the memory access to the half, the image is partitioned in such a way that half of the matching operations utilize the same data fetched for processing the other half of the matching operations. Consequently, the proposed architecture can encode a 1024×1024 RGB image within a minimal time of 12.2 ms, and a compression ratio of 46.5. Accordingly, the proposed architecture is further superior to the state-of-the-art architectures.©2022 The Authors. Published by IEEE. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/fi=vertaisarvioitu|en=peerReviewed

    Microscale quantification of mycosphere pH and oxygen as drivers of bacterial fungal interactions

    Get PDF
    Fungi and bacteria co-inhabit a wide variety of habitats, and their interactions are significant drivers of many ecosystem services and functions. Creating unique microenvironments, fungal mycelia and their surroundings (defined here as the mycosphere) allow for spatially distinct fungal bacterial activities and interactions at the microscale. Fungi in particular modulate the mycosphere pH and oxygen as the drivers and/or the results of various fungal processes. However, due to the microscopic diameters of hyphae (typically 2-10 μm), it is experimentally difficult to non-invasively access themycosphere to thereby analyze the local pH and oxygen on hyphae or around mycelia. Hence, in this thesis, I aimed to develop and deploy microscale techniques to analyzethe mycosphere pH and oxygen in vitroand thereby to further resolve their influences on the local microbial life for a better understanding of mycosphere habitat properties and functioning

    Gas-Grain Simulation Facility: Fundamental studies of particle formation and interactions. Volume 2: Abstracts, candidate experiments and feasibility study

    Get PDF
    An overview of the Gas-Grain Simulation Facility (GGSF) project and its current status is provided. The proceedings of the Gas-Grain Simulation Facility Experiments Workshop are recorded. The goal of the workshop was to define experiments for the GGSF--a small particle microgravity research facility. The workshop addressed the opportunity for performing, in Earth orbit, a wide variety of experiments that involve single small particles (grains) or clouds of particles. Twenty experiments from the fields of exobiology, planetary science, astrophysics, atmospheric science, biology, physics, and chemistry were described at the workshop and are outlined in Volume 2. Each experiment description included specific scientific objectives, an outline of the experimental procedure, and the anticipated GGSF performance requirements. Since these experiments represent the types of studies that will ultimately be proposed for the facility, they will be used to define the general science requirements of the GGSF. Also included in the second volume is a physics feasibility study and abstracts of example Gas-Grain Simulation Facility experiments and related experiments in progress
    corecore