87 research outputs found

    An Analysis of the Requirements for Efficient Protocols in WBAN

    Get PDF
    Wireless Body Area Networks (WBAN) plays a major role in the advancement of technology, particularly for diagnosising the many life threatening diseases as well as providing real-time health monitoring. The objective of this paper is to study and analyze the problems of protocols in WBAN to provide the requirements related to health care in a medical environment. The protocols need to be energy efficient and reliable as well. To date, several metrics, such as channel utilization and energy efficiencies are defined. This research provides a clear outlook on the types of routing protocols and the problems related to the losses and distribution of data in a medical environment, thus meeting energy efficiency, low delay and reliability

    A comprehensive survey of wireless body area networks on PHY, MAC, and network layers solutions

    Get PDF
    Recent advances in microelectronics and integrated circuits, system-on-chip design, wireless communication and intelligent low-power sensors have allowed the realization of a Wireless Body Area Network (WBAN). A WBAN is a collection of low-power, miniaturized, invasive/non-invasive lightweight wireless sensor nodes that monitor the human body functions and the surrounding environment. In addition, it supports a number of innovative and interesting applications such as ubiquitous healthcare, entertainment, interactive gaming, and military applications. In this paper, the fundamental mechanisms of WBAN including architecture and topology, wireless implant communication, low-power Medium Access Control (MAC) and routing protocols are reviewed. A comprehensive study of the proposed technologies for WBAN at Physical (PHY), MAC, and Network layers is presented and many useful solutions are discussed for each layer. Finally, numerous WBAN applications are highlighted

    Towards the fast and robust optimal design of Wireless Body Area Networks

    Full text link
    Wireless body area networks are wireless sensor networks whose adoption has recently emerged and spread in important healthcare applications, such as the remote monitoring of health conditions of patients. A major issue associated with the deployment of such networks is represented by energy consumption: in general, the batteries of the sensors cannot be easily replaced and recharged, so containing the usage of energy by a rational design of the network and of the routing is crucial. Another issue is represented by traffic uncertainty: body sensors may produce data at a variable rate that is not exactly known in advance, for example because the generation of data is event-driven. Neglecting traffic uncertainty may lead to wrong design and routing decisions, which may compromise the functionality of the network and have very bad effects on the health of the patients. In order to address these issues, in this work we propose the first robust optimization model for jointly optimizing the topology and the routing in body area networks under traffic uncertainty. Since the problem may result challenging even for a state-of-the-art optimization solver, we propose an original optimization algorithm that exploits suitable linear relaxations to guide a randomized fixing of the variables, supported by an exact large variable neighborhood search. Experiments on realistic instances indicate that our algorithm performs better than a state-of-the-art solver, fast producing solutions associated with improved optimality gaps.Comment: Authors' manuscript version of the paper that was published in Applied Soft Computin

    Opto-Ultrasonic Communications in Wireless Body Area Nanonetworks

    Get PDF
    Abstract—Wirelessly interconnected nanorobots, i.e., engineered devices of sizes ranging from one to a few hundred nanometers, are promising revolutionary diagnostic and therapeutic medical applications that could enhance the treatment of major diseases. Each nanorobot is usually designed to perform a set of basic tasks such as sensing and actuation. A dense wireless network of nano-devices, i.e., a nanonetwork, could potentially accomplish new and more complex functionalities, e.g., in-vivo monitoring or adaptive drug-delivery, thus enabling revolutionary nanomedicine applications. Several innovative communication paradigms to enable nanonetworks have been proposed in the last few years, including electromagnetic communications in the terahertz band, or molecular and neural communications. In this paper, we propose and discuss an alternative approach based on establishing intrabody opto-ultrasonic communications among nanorobots. Optoultrasonic communications are based on the optoacoustic effect, which enables the generation of high-frequency acoustic waves by irradiating the medium with electromagnetic energy in the optical frequency range. We first discuss the fundamentals of nanoscale opto-ultrasonic communications in biological tissues, and then we model the generation, propagation, and detection of opto-ultrasonic waves. I

    Wireless Technologies for Implantable Devices

    Get PDF
    Wireless technologies are incorporated in implantable devices since at least the 1950s. With remote data collection and control of implantable devices, these wireless technologies help researchers and clinicians to better understand diseases and to improve medical treatments. Today, wireless technologies are still more commonly used for research, with limited applications in a number of clinical implantable devices. Recent development and standardization of wireless technologies present a good opportunity for their wider use in other types of implantable devices, which will significantly improve the outcomes of many diseases or injuries. This review briefly describes some common wireless technologies and modern advancements, as well as their strengths and suitability for use in implantable medical devices. The applications of these wireless technologies in treatments of orthopedic and cardiovascular injuries and disorders are described. This review then concludes with a discussion on the technical challenges and potential solutions of implementing wireless technologies in implantable devices

    Engineering mechanobiology: the bacterial exclusively-mechanosensitive ion channel MscL as a future tool for neuronal stimulation technology

    Get PDF
    The development of novel approaches to stimulate neuronal circuits is crucial to understand the physiology of neuronal networks, and to provide new strategies to treat neurological disorders. Nowadays, chemical, electrical or optical approaches are the main exploited strategies to interrogate and dissect neuronal circuit functions. However, although all these methods have contributed to achieve important insights into neuroscience research field, they all present relevant limitations for their use in in-vivo studies or clinical applications. For example, while chemical stimulation does not require invasive surgical procedures, it is difficult to control the pharmacokinetics and the spatial selectivity of the stimulus; electrical stimulation provides high temporal bandwidth, but it has low spatial resolution and it requires implantation of electrodes; optical stimulation provides subcellular resolution but the low depth penetration in dense tissue still requires the invasive insertion of stimulating probes. Due to all these drawbacks, there is still a strong need to develop new stimulation strategies to remotely activate neuronal circuits as deep as possible. The development of remote stimulation techniques would allow the combination of functional and behavioral studies, and the design of novel and minimally invasive prosthetic approaches. Alternative approaches to circumvent surgical implantation of probes include transcranial electrical, thermal, magnetic, and ultrasound stimulation. Among v these methods, the use of magnetic and ultrasound (US) fields represents the most promising vector to remotely convey information to the brain tissue. Both magnetic and low-intensity US fields provide an efficient mean for delicate and reversible alteration of cells and tissues through the generation of local mechanical perturbations. In this regard, advances in the mechanobiology research field have led to the discovery, design and engineering of cellular transduction pathways to perform stimulation of cellular activity. Furthermore, the use of US pressure fields is attracting considerable interest due to its potential for the development of miniaturized, portable and implantation-free US stimulation devices. The purpose of my PhD research activity was the establishment of a novel neuronal stimulation paradigm adding a cellular selectivity to the US stimulation technology through the selective mechano-sensitization of neuronal cells, in analogy to the well-established optogenetic approach. In order to achieve the above mentioned goal, we propose the cellular overexpression of mechanosensitive (MS) ion channels, which could then be gated upon the application of an US generated pressure field. Therefore, we selected the bacterial large conductance mechanosensitive ion channel (MscL), an exclusively-MS ion channel, as ideal tool to develop a mechanogenetic approach. Indeed, the MscL with its extensive characterization represents a malleable nano-valve that could be further engineered with respect to channel sensitivity, conductance and gating mechanism, in order to obtain the desired biophysical properties to achieve reliable and efficient remote mechanical stimulation of neuronal activity. In the first part of the work, we report the development of an engineered MscL construct, called eMscL, to induce the heterologous expression of the bacterial protein in rodent primary neuronal cultures. Furthermore, we report the structural and functional characterization of neuronal cells expressing the eMscL channel, at both single-cell and network levels, in order to show that the functional expression of the engineered MscL channel induces an effective vi neuronal sensitization to mechanical stimulation, which does not affect the physiological development of the neuronal itself. In the second part of the work, we report the design and development of a water tank-free ultrasound delivery system integrated to a custom inverted fluorescence microscope, which allows the simultaneous US stimulation and monitoring of neuronal network activity at single resolution. Overall, this work represents the first development of a genetically mechanosensitized neuronal in-vitro model. Moreover, the developed US delivery system provides the platform to perform high-throughput and reliable investigation, testing and calibration of the stimulation protocols. In this respect, we propose, and envisage in the near future, the exploitation of the engineered MscL ion channel as a mature tool for novel neuro-technological applications

    Reliable and Energy Efficient Network Protocols for Wireless Body Area Networks

    Get PDF
    In a wireless Body Area Network (WBAN) various sensors are attached on clothing, on the body or are even implanted under the skin. The wireless nature of the network and the wide variety of sensors offers numerous new, practical and innovative applications. A motivating example can be found in the world of health monitoring. The sensors of the WBAN measure for example the heartbeat, the body temperature or record a prolonged electrocardiogram. Using a WBAN, the patient experiences a greater physical mobility and is no longer compelled to stay in a hospital. A WBAN imposes the networks some strict and specific requirements. The devices are tiny, leaving only limited space for a battery. It is therefore of uttermost importance to restrict the energy consumption in the network. A possible solution is the development of energy efficient protocols that regulate the communication between the radios. Further, it is also important to consider the reliability of the communication. The data sent contains medical information and one has to make sure that it is correctly received at the personal device. It is not allowed that a critical message gets lost. In addition, a WBAN has to support the heterogeneity of its devices. This thesis focuses on the development of energy efficient and reliable network protocols for WBANs. Considered solutions are the use of multi-hop communication and the improved interaction between the different network layers. Mechanisms to reduce the energy consumption and to grade up the reliability of the communication are presented. In a first step, the physical layer of the communication near the human body is studied and investigated. The probability of a connection between two nodes on the body is modeled and used to investigate which network topologies can be considered as the most energy efficient and reliable. Next, MOFBAN, a lightweight framework for network architecture is presented. Finally, CICADA is presented: a new cross layer protocol for WBANs that both handles channel medium access and routing

    A ZigBee-based wireless biomedical sensor network as a precursor to an in-suit system for monitoring astronaut state of health

    Get PDF
    Master of ScienceDepartment of Electrical and Computer EngineeringSteven WarrenNetworks of low-power, in-suit, wired and wireless health sensors offer the potential to track and predict the health of astronauts engaged in extra-vehicular and in-station activities in zero- or reduced- gravity environments. Fundamental research questions exist regarding (a) types and form factors of biomedical sensors best suited for these applications, (b) optimal ways to render wired/wireless on-body networks with the objective to draw little-to-no power, and (c) means to address the wireless transmission challenges offered by a spacesuit constructed from layers of aluminized mylar. This thesis addresses elements of these research questions through the implementation of a collection of ZigBee-based wireless health monitoring devices that can potentially be integrated into a spacesuit, thereby providing continuous information regarding astronaut fatigue and state of health. Wearable biomedical devices investigated for this effort include electrocardiographs, electromyographs, pulse oximeters, inductive plethysmographs, and accelerometers/gyrometers. These ZigBee-enabled sensors will form the nodes of an in-suit ZigBee Pro network that will be used to (1) establish throughput requirements for a functional in-suit network and (2) serve as a performance baseline for future devices that employ ultra-low-power field-programmable gate arrays and micro-transceivers. Sensor devices will upload data to a ZigBee network coordinator that has the form of a pluggable USB connector. Data are currently visualized using MATLAB and LabVIEW
    • …
    corecore