59 research outputs found

    Rate control for VBR video coders in broad-band networks

    Full text link

    Rate Control for VBR Video Coders in Broadband Networks

    Get PDF

    Evalvid-RASV: Shaped VBR rate adaptation stored video system

    Get PDF
    Video traffic is a variable bit rates (VBR data source in nature and it generates highly bursty traffic.Recent implementations mostly buffer the media source in order to regenerate it in the form of constant bit rates (CBR).Consequently, it will add more delays to the system and thus unable to support the original nature of the video data.Inspired by the works of Hamdi et al. and Lie and Klaue, we developed Evalvid-RASV. This system is working on the VBR concept (open-loop video coding), but it is “shaped” so that it will not produce uncompromised bursty traffic without additional delay. With the knowledge of video characteristics in advance, Evalvid-RASV was developed to utilize the information resulting a better algorithm. In addition, we implemented the system in Evalvid-RA environment.It is an environment which is able to perform rate adaptation to the media data source and has an integrated video performance evaluation tools, especially user-perceived video quality.Our experiments have shown that Evalvid-RASV outperforms open-loop VBR in term Peak Signal Noise Ratio (PSNR) value and acceptable delay time

    Predictive Encoder and Buffer Control for Statistical Multiplexing of Multimedia Contents

    No full text
    International audienceStatistical multiplexing of video contents aims at transmitting several variable bit rate (VBR) encoded video streams over a band-limited channel. Rate-distortion (RD) models for the encoded streams are often used to control the video encoders. Buffering at the output of encoders is one of the several techniques used to smooth out the fluctuating bit rate of compressed video due to variations in the activity of video contents. In this paper, a statistical multiplexer is proposed where a closed-loop control of both video encoders and buffers is performed jointly. First, a predictive joint video encoder controller accounting for minimum quality, fairness, and smoothness constraints is considered. Second, all buffers are controlled simultaneously to regulate the buffering delays. This delay is adjusted according to a reference delay constraint. The main idea is to update the encoding rate for each video unit according to the average level of the buffers, to maximize the quality of each program and effectively use the available channel rate. Simulation results show that the proposed scheme yields a smooth and fair video quality among programs thanks to the predictive control. A similar buffering delay for all programs and an efficient use of the available channel rate are ensured thanks to the buffer management and to the predictive closed-loop control

    Video traffic modeling and delivery

    Get PDF
    Video is becoming a major component of the network traffic, and thus there has been a great interest to model video traffic. It is known that video traffic possesses short range dependence (SRD) and long range dependence (LRD) properties, which can drastically affect network performance. By decomposing a video sequence into three parts, according to its motion activity, Markov-modulated self-similar process model is first proposed to capture autocorrelation function (ACF) characteristics of MPEG video traffic. Furthermore, generalized Beta distribution is proposed to model the probability density functions (PDFs) of MPEG video traffic. It is observed that the ACF of MPEG video traffic fluctuates around three envelopes, reflecting the fact that different coding methods reduce the data dependency by different amount. This observation has led to a more accurate model, structurally modulated self-similar process model, which captures the ACF of the traffic, both SRD and LRD, by exploiting the MPEG structure. This model is subsequently simplified by simply modulating three self-similar processes, resulting in a much simpler model having the same accuracy as the structurally modulated self-similar process model. To justify the validity of the proposed models for video transmission, the cell loss ratios (CLRs) of a server with a limited buffer size driven by the empirical trace are compared to those driven by the proposed models. The differences are within one order, which are hardly achievable by other models, even for the case of JPEG video traffic. In the second part of this dissertation, two dynamic bandwidth allocation algorithms are proposed for pre-recorded and real-time video delivery, respectively. One is based on scene change identification, and the other is based on frame differences. The proposed algorithms can increase the bandwidth utilization by a factor of two to five, as compared to the constant bit rate (CBR) service using peak rate assignment

    Slight-Delay Shaped Variable Bit Rate (SD-SVBR) Technique for Video Transmission

    Get PDF
    The aim of this thesis is to present a new shaped Variable Bit Rate (VBR) for video transmission, which plays a crucial role in delivering video traffic over the Internet. This is due to the surge of video media applications over the Internet and the video typically has the characteristic of a highly bursty traffic, which leads to the Internet bandwidth fluctuation. This new shaped algorithm, referred to as Slight Delay - Shaped Variable Bit Rate (SD-SVBR), is aimed at controlling the video rate for video application transmission. It is designed based on the Shaped VBR (SVBR) algorithm and was implemented in the Network Simulator 2 (ns-2). SVBR algorithm is devised for real-time video applications and it has several limitations and weaknesses due to its embedded estimation or prediction processes. SVBR faces several problems, such as the occurrence of unwanted sharp decrease in data rate, buffer overflow, the existence of a low data rate, and the generation of a cyclical negative fluctuation. The new algorithm is capable of producing a high data rate and at the same time a better quantization parameter (QP) stability video sequence. In addition, the data rate is shaped efficiently to prevent unwanted sharp increment or decrement, and to avoid buffer overflow. To achieve the aim, SD-SVBR has three strategies, which are processing the next Group of Picture (GoP) video sequence and obtaining the QP-to-data rate list, dimensioning the data rate to a higher utilization of the leaky-bucket, and implementing a QP smoothing method by carefully measuring the effects of following the previous QP value. However, this algorithm has to be combined with a network feedback algorithm to produce a better overall video rate control. A combination of several video clips, which consisted of a varied video rate, has been used for the purpose of evaluating SD-SVBR performance. The results showed that SD-SVBR gains an impressive overall Peak Signal-to-Noise Ratio (PSNR) value. In addition, in almost all cases, it gains a high video rate but without buffer overflow, utilizes the buffer well, and interestingly, it is still able to obtain smoother QP fluctuation

    Design of a transport coding scheme for high-quality video over ATM networks

    Get PDF
    Caption title.Includes bibliographical references (p. 38-39).Supported by ARPA. F30602-92-C-0030 Supported by the Laboratory for Information and Decision Systems, Massachusetts Institute of Technology. DAAH04-95-1-0103V. Parthasarathy, J.W. Modestino and K.S. Vastola

    The relationship of TFRC congestion control to video rate control optimization

    Get PDF
    Rate control plays an important role in delivering video traffic over the Internet due to highly bursty nature of the video data and variability of the network bandwidth.The researchers in this area are either controlling the video rate coding or optimizing the congestion control to support the video traffic transmission.As a consequence of layering principle of the network architecture, the algorithm in each layer works independently.Thus, any optimization at video coding rate does not necessarily improve the video data transmission effectively.In this paper, we investigated the above-mentioned premise. We found that TFRC works independently from the video coding rate.Consequently, any effort to optimize the video traffic Internet transmission needs to consider employing rate control schemes both at video coding rate and congestion control algorithm
    • …
    corecore