308 research outputs found

    A methodology for fast assessments to the electrical activity of barrel fields in vivo: from population inputs to single unit outputs

    Get PDF
    Here we propose a methodology to analyze volumetric electrical activity of neuronal masses in the somatosensory barrel field of Wistar rats. The key elements of the proposed methodology are a three-dimensional microelectrode array, which was customized by our group to observe extracellular recordings from an extended area of the barrel field, and a novel method for the current source density analysis. By means of this methodology, we were able to localize single barrels from their event-related responses to single whisker deflection. It was also possible to assess the spatiotemporal dynamics of neuronal aggregates in several barrels at the same time with the resolution of single neurons. We used simulations to study the robustness of our methodology to unavoidable physiological noise and electrode configuration. We compared the accuracy to reconstruct neocortical current sources with that obtained with a previous method. This constitutes a type of electrophysiological microscopy with high spatial and temporal resolution, which could change the way we analyze the activity of cortical neurons in the future

    Imaging physiological brain activity and epilepsy with Electrical Impedance Tomography

    Get PDF
    Electrical Impedance Tomography (EIT) allows reconstructing conductivity changes into images. EIT detects fast impedance changes occurring over milliseconds, due to ion channel opening, and slow impedance changes, appearing in seconds, due to cell swelling/increased blood flow. The purpose of this work was to examine the feasibility of using EIT for imaging a gyrencephalic brain with implanted depth electrodes during seizures. Chapter 1 summarises the principles of EIT. In Chapter 2, it is investigated whether recent technical improvements could enable EIT to image slow impedance changes upon visual stimulation non-invasively. This was unsuccessful so the remaining studies were undertaken on intracranial recordings. Chapter 3 presents a computer modelling study using data from patients, for whom the detection of simulated seizure-onset perturbations for both, fast and slow impedance changes, were improved with EIT compared to stereotactic electroencephalography (SEEG) detection or EEG inverse-source modelling. Chapter 4 describes the development of a portable EIT system that could be used on patients. The system does not require averaging and post-hoc signal processing to remove switching artefacts, which was the case previously. Chapter 5 describes the use of the optimised method in chemically-induced focal epilepsy in anaesthetised pigs implanted with depth electrodes. This shows for the first time EIT was capable of producing reproducible images of the onset and spread of seizure-related slow impedance changes in real-time. Chapter 6 presents a study on imaging ictal/interictal-related fast impedance changes. The feasibility of reconstructing ictal-related impedance changes is demonstrated for one pig and interictal-related impedance changes were recorded for the first time in humans. Chapter 7 summarises all work and future directions. Overall, this work suggests EIT in combination with SEEG has a potential to improve the diagnostic yield in epilepsy and demonstrates EIT can be performed safely and ethically creating a foundation for further clinical trials

    Versatile Surface Electrodes for Combined Electrophysiology and Two-Photon Imaging of the Mouse Central Nervous System

    Get PDF
    Understanding and modulating CNS function in physiological as well as pathophysiological contexts remains a significant ambition in research and clinical applications. The investigation of the multifaceted CNS cell types including their interactions and contributions to neural function requires a combination of the state-ofthe-art in vivo electrophysiology and imaging techniques. We developed a novel type of liquid crystal polymer (LCP) surface micro-electrode manufactured in three customized designs with up to 16 channels for recording and stimulation of brain activity. All designs include spare central spaces for simultaneous 2P-imaging. Nanoporous platinumplated contact sites ensure a low impedance and high current transfer. The epidural implantation of the LCP micro-electrodes could be combined with standard cranial window surgery. The epidurally positioned electrodes did not only display long-term biocompatibility, but we also observed an additional stabilization of the underlying CNS tissue. We demonstrate the electrode’s versatility in combination with in vivo 2P-imaging by monitoring anesthesia-awake cycles of transgenic mice with GCaMP3 expression in neurons or astrocytes. Cortical stimulation and simultaneous 2P Ca2+ imaging in neurons or astrocytes highlighted the astrocytes’ integrative character in neuronal activity processing. Furthermore, we confirmed that spontaneous astroglial Ca2+ signals are dampened under anesthesia, while evoked signals in neurons and astrocytes showed stronger dependency on stimulation intensity rather than on various levels of anesthesia. Finally, we show that the electrodes provide recordings of the electrocorticogram (ECoG) with a high signal-to noise ratio and spatial signal differences which help to decipher brain activity states during experimental procedures. Summarizing, the novel LCP surface micro-electrode is a versatile, convenient, and reliable tool to investigate brain function in vivo

    Multielectrode microstimulation for temporal lobe epilepsy

    Get PDF
    Multielectrode arrays may have several advantages compared to the traditional single macroelectrode brain electrical stimulation technique including less tissue damage due to implantation and the ability to deliver several spatio-temporal patterns of stimulation. Prior work on cell cultures has shown that multielectrode arrays are capable of completely stopping seizure-like spontaneous bursting events through a distributed asynchronous multi-site approach. In my studies, I used a similar approach for controlling seizures in a rat model of temporal lobe epilepsy. First, I developed a new method of electroplating in vivo microelectrode arrays for durably improving their impedance. I showed that microelectrode arrays electroplated through the new technique called sonicoplating, required the least amount of voltage in current controlled stimulation studies and also produced the least amplitude and duration of stimulation artifact compared to unplated, DC electroplated or pulse-plated microelectrodes. Second, using c-fos immunohistochemistry, I showed that 16-electrode sonicoplated microelectrode arrays can activate 5.9 times more neurons in the dorsal hippocampus compared to a single macroelectrodes while causing < 77% the tissue damage. Next, through open-loop multisite asynchronous microstimulation, I reduced seizure frequency by ~50% in the rodent model of temporal lobe epilepsy. Preliminary studies aimed at using the same stimulation protocol in closed-loop responsive and predictive seizure control did not stop seizures. Finally, through an internship at Medtronic Neuromodulation, I worked on developing and implementing a rapid algorithm prototyping research tool for closed-loop human deep brain stimulation applications.Ph.D

    Technological advances in deep brain stimulation:Towards an adaptive therapy

    Get PDF
    Parkinson's disease (PD) is neurodegenerative movement disorder and a treatment method called deep brain stimulation (DBS) may considerably reduce the patient’s motor symptoms. The clinical procedure involves the implantation of a DBS lead, consisting of multiple electrode contacts, through which continuous high frequency (around 130 Hz) electric pulses are delivered in the brain. In this thesis, I presented the research which had the goal to improve current DBS technology, focusing on bringing the conventional DBS system a step closer to adaptive DBS, a personalized DBS therapy. The chapters in this thesis can be seen as individual building blocks for such an adaptive DBS system. After the general introduction, the first two chapters, two novel DBS lead designs are studied in a computational model. The model showed that both studied leads were able to exploit the novel distribution of the electrode contacts to shape and steer the stimulation field to activate more neurons in the chosen target compared to the conventional lead, and to counteract lead displacement. In the fourth chapter, an inverse current source density (CSD) method is applied on local field potentials (LFP) measured in a rat model. The pattern of CSD sources can act as a landmark within the STN to locate the potential stimulation target. The fifth and final chapter described the last building block of the DBS system. We introduced an inertial sensors and force sensor based measurement system, which can record hand kinematics and joint stiffness of PD patients. A system which can act as a feedback signal in an adaptive DBS system

    Techniques for imaging small impedance changes in the human head due to neuronal depolarisation

    Get PDF
    A new imaging modality is being developed, which may be capable of imaging small impedance changes in the human head due to neuronal depolarization. One way to do this would be by imaging the impedance changes associated with ion channels opening in neuronal membranes in the brain during activity. The results of previous modelling and experimental studies indicated that impedance changes between 0.6%and 1.7% locally in brain grey matter when recorded at DC. This reduces by a further of 10% if measured at the surface of the head, due to distance and the effect of the resistive skull. In principle, this could be measured using Electrical Impedance Tomography (ElT) but it is close to its threshold of detectability. With the inherent limitation in the use of electrodes, this work proposed two new schemes. The first is a magnetic measurement scheme based on recording the magnetic field with Superconducting Quantum Interference Devices (SQUIDs), used in Magnetoencephalography (MEG) as a result of a non-invasive injection of current into the head. This scheme assumes that the skull does not attenuate the magnetic field. The second scheme takes into consideration that the human skull is irregular in shape, with less and varying conductivity as compared to other head tissues. Therefore, a key issue is to know through which electrodes current can be injected in order to obtain high percentage changes in surface potential when there is local conductivity change in the head. This model will enable the prediction of the current density distribution at specific regions in the brain with respect to the varying skull and local conductivities. In the magnetic study, the head was modelled as concentric spheres, and realistic head shapes to mimic the scalp, skull, Cerebrospinal Auid (CSF) and brain using the Finite Element Method (FEM). An impedance change of 1 % in a 2cm-radius spherical volume depicting the physiological change in the brain was modelled as the region of depolarisation. The magnetic field, 1 cm away from the scalp, was estimated on injecting a constant current of 100 µA into the head from diametrically opposed electrodes. However, in the second scheme, only the realistic FEM of the head was used, which included a specific region of interest; the primary visual cortex (V1). The simulated physiological change was the variation in conductivity of V1 when neurons were assumed to be firing during a visual evoked response. A near DC current of 100 µA was driven through possible pairs of 31 electrodes using ElT techniques. For a fixed skull conductivity, the resulting surface potentials were calculated when the whole head remained unperturbed, or when the conductivity of V1 changed by 0.6%, 1 %, and 1.6%. The results of the magnetic measurement predicted that standing magnetic field was about 10pT and the field changed by about 3fT (0.03%) on depolarization. For the second scheme, the greatest mean current density through V1 was 0.020 ± 0.005 µAmm-2, and occurred with injection through two electrodes positioned near the occipital cortex. The corresponding maximum change in potential from baseline was 0.02%. Saline tank experiments confirmed the accuracy of the estimated standing potentials. As the noise density in a typical MEG system in the frequency band is about 7fT/√Hz, it places the change at the limit of detectability due to low signal to noise ratio. This is therefore similar to electrical recording, as in conventional ElT systems, but there may be advantages to MEG in that the magnetic field direcdy traverses the skull and instrumentation errors from the electrode-skin interface will be obviated. This has enabled the estimation of electrode positions most likely to permit recording of changes in human experiments and suggests that the changes, although tiny, may just be discernible from noise

    DICOM for EIT

    Get PDF
    With EIT starting to be used in routine clinical practice [1], it important that the clinically relevant information is portable between hospital data management systems. DICOM formats are widely used clinically and cover many imaging modalities, though not specifically EIT. We describe how existing DICOM specifications, can be repurposed as an interim solution, and basis from which a consensus EIT DICOM ‘Supplement’ (an extension to the standard) can be writte

    Estimation of thorax shape for forward modelling in lungs EIT

    Get PDF
    The thorax models for pre-term babies are developed based on the CT scans from new-borns and their effect on image reconstruction is evaluated in comparison with other available models

    Rapid generation of subject-specific thorax forward models

    Get PDF
    For real-time monitoring of lung function using accurate patient geometry, shape information needs to be acquired and a forward model generated rapidly. This paper shows that warping a cylindrical model to an acquired shape results in meshes of acceptable mesh quality, in terms of stretch and aspect ratio
    corecore