116 research outputs found

    The dual half-edge-a topological primal/dual data structure and construction operators for modelling and manipulating cell complexes

    Get PDF
    © 2016 by the authors. There is an increasing need for building models that permit interior navigation, e.g., for escape route analysis. This paper presents a non-manifold Computer-Aided Design (CAD) data structure, the dual half-edge based on the Poincaré duality that expresses both the geometric representations of individual rooms and their topological relationships. Volumes and faces are expressed as vertices and edges respectively in the dual space, permitting a model just based on the storage of primal and dual vertices and edges. Attributes may be attached to all of these entities permitting, for example, shortest path queries between specified rooms, or to the exterior. Storage costs are shown to be comparable to other non-manifold models, and construction with local Euler-type operators is demonstrated with two large university buildings. This is intended to enhance current developments in 3D Geographic Information Systems for interior and exterior city modelling

    A fast and optimal pathfinder using airborne LiDAR data

    Get PDF
    Determining the optimal path between two points in a 3D point cloud is a problem that have been addressed in many different situations: from road planning and escape routes determination, to network routing and facility layout. This problem is addressed using different input information, being 3D point clouds one of the most valuables. Its main utility is to save costs, whatever the field of application is. In this paper, we present a fast algorithm to determine the least cost path in an Airborne Laser Scanning point cloud. In some situations, like finding escape routes for instance, computing the solution in a very short time is crucial, and there are not many works developed in this theme. State of the art methods are mainly based on a digital terrain model (DTM) for calculating these routes, and these methods do not reflect well the topography along the edges of the graph. Also, the use of a DTM leads to a significant loss of both information and precision when calculating the characteristics of possible routes between two points. In this paper, a new method that does not require the use of a DTM and is suitable for airborne point clouds, whether they are classified or not, is proposed. The problem is modeled by defining a graph using the information given by a segmentation and a Voronoi Tessellation of the point cloud. The performance tests show that the algorithm is able to compute the optimal path between two points by processing up to 678,820 points per second in a point cloud of 40,000,000 points and 16 km² of extensionThis work has received financial support from the Consellería de Cultura, Educación e Ordenación Universitaria (accreditation 2019-2022 ED431G-2019/04, reference competitive group 2019-2021, ED431C 2018/19) and the European Regional Development Fund (ERDF), which acknowledges the CiTIUS-Research Center in Intelligent Technologies of the University of Santiago de Compostela as a Research Center of the Galician University System. This work was also supported by the Ministry of Economy and Competitiveness, Government of Spain (Grant No. PID2019-104834 GB-I00). We also acknowledge the Centro de Supercomputación de Galicia (CESGA) for the use of their computersS

    Towards development of fuzzy spatial datacubes : fundamental concepts with example for multidimensional coastal erosion risk assessment and representation

    Get PDF
    Les systèmes actuels de base de données géodécisionnels (GeoBI) ne tiennent généralement pas compte de l'incertitude liée à l'imprécision et le flou des objets; ils supposent que les objets ont une sémantique, une géométrie et une temporalité bien définies et précises. Un exemple de cela est la représentation des zones à risque par des polygones avec des limites bien définies. Ces polygones sont créés en utilisant des agrégations d'un ensemble d'unités spatiales définies sur soit des intérêts des organismes responsables ou les divisions de recensement national. Malgré la variation spatio-temporelle des multiples critères impliqués dans l’analyse du risque, chaque polygone a une valeur unique de risque attribué de façon homogène sur l'étendue du territoire. En réalité, la valeur du risque change progressivement d'un polygone à l'autre. Le passage d'une zone à l'autre n'est donc pas bien représenté avec les modèles d’objets bien définis (crisp). Cette thèse propose des concepts fondamentaux pour le développement d'une approche combinant le paradigme GeoBI et le concept flou de considérer la présence de l’incertitude spatiale dans la représentation des zones à risque. En fin de compte, nous supposons cela devrait améliorer l’analyse du risque. Pour ce faire, un cadre conceptuel est développé pour créer un model conceptuel d’une base de donnée multidimensionnelle avec une application pour l’analyse du risque d’érosion côtier. Ensuite, une approche de la représentation des risques fondée sur la logique floue est développée pour traiter l'incertitude spatiale inhérente liée à l'imprécision et le flou des objets. Pour cela, les fonctions d'appartenance floues sont définies en basant sur l’indice de vulnérabilité qui est un composant important du risque. Au lieu de déterminer les limites bien définies entre les zones à risque, l'approche proposée permet une transition en douceur d'une zone à une autre. Les valeurs d'appartenance de plusieurs indicateurs sont ensuite agrégées basées sur la formule des risques et les règles SI-ALORS de la logique floue pour représenter les zones à risque. Ensuite, les éléments clés d'un cube de données spatiales floues sont formalisés en combinant la théorie des ensembles flous et le paradigme de GeoBI. En plus, certains opérateurs d'agrégation spatiale floue sont présentés. En résumé, la principale contribution de cette thèse se réfère de la combinaison de la théorie des ensembles flous et le paradigme de GeoBI. Cela permet l’extraction de connaissances plus compréhensibles et appropriées avec le raisonnement humain à partir de données spatiales et non-spatiales. Pour ce faire, un cadre conceptuel a été proposé sur la base de paradigme GéoBI afin de développer un cube de données spatiale floue dans le system de Spatial Online Analytical Processing (SOLAP) pour évaluer le risque de l'érosion côtière. Cela nécessite d'abord d'élaborer un cadre pour concevoir le modèle conceptuel basé sur les paramètres de risque, d'autre part, de mettre en œuvre l’objet spatial flou dans une base de données spatiales multidimensionnelle, puis l'agrégation des objets spatiaux flous pour envisager à la représentation multi-échelle des zones à risque. Pour valider l'approche proposée, elle est appliquée à la région Perce (Est du Québec, Canada) comme une étude de cas.Current Geospatial Business Intelligence (GeoBI) systems typically do not take into account the uncertainty related to vagueness and fuzziness of objects; they assume that the objects have well-defined and exact semantics, geometry, and temporality. Representation of fuzzy zones by polygons with well-defined boundaries is an example of such approximation. This thesis uses an application in Coastal Erosion Risk Analysis (CERA) to illustrate the problems. CERA polygons are created using aggregations of a set of spatial units defined by either the stakeholders’ interests or national census divisions. Despite spatiotemporal variation of the multiple criteria involved in estimating the extent of coastal erosion risk, each polygon typically has a unique value of risk attributed homogeneously across its spatial extent. In reality, risk value changes gradually within polygons and when going from one polygon to another. Therefore, the transition from one zone to another is not properly represented with crisp object models. The main objective of the present thesis is to develop a new approach combining GeoBI paradigm and fuzzy concept to consider the presence of the spatial uncertainty in the representation of risk zones. Ultimately, we assume this should improve coastal erosion risk assessment. To do so, a comprehensive GeoBI-based conceptual framework is developed with an application for Coastal Erosion Risk Assessment (CERA). Then, a fuzzy-based risk representation approach is developed to handle the inherent spatial uncertainty related to vagueness and fuzziness of objects. Fuzzy membership functions are defined by an expert-based vulnerability index. Instead of determining well-defined boundaries between risk zones, the proposed approach permits a smooth transition from one zone to another. The membership values of multiple indicators (e.g. slop and elevation of region under study, infrastructures, houses, hydrology network and so on) are then aggregated based on risk formula and Fuzzy IF-THEN rules to represent risk zones. Also, the key elements of a fuzzy spatial datacube are formally defined by combining fuzzy set theory and GeoBI paradigm. In this regard, some operators of fuzzy spatial aggregation are also formally defined. The main contribution of this study is combining fuzzy set theory and GeoBI. This makes spatial knowledge discovery more understandable with human reasoning and perception. Hence, an analytical conceptual framework was proposed based on GeoBI paradigm to develop a fuzzy spatial datacube within Spatial Online Analytical Processing (SOLAP) to assess coastal erosion risk. This necessitates developing a framework to design a conceptual model based on risk parameters, implementing fuzzy spatial objects in a spatial multi-dimensional database, and aggregating fuzzy spatial objects to deal with multi-scale representation of risk zones. To validate the proposed approach, it is applied to Perce region (Eastern Quebec, Canada) as a case study

    Multiple Resource Network Voronoi Diagram

    Get PDF
    Given a spatial network and a set of service center nodes from k different resource types, a Multiple Resource-Network Voronoi Diagram (MRNVD) partitions the spatial network into a set of Service Areas that can minimize the total cycle distances of graph-nodes to allotted k service center nodes with different resource types. The MRNVD problem is important for critical societal applications such as assigning essential survival supplies (e.g., food, water, gas, and medical assistance) to residents impacted by man-made or natural disasters. The MRNVD problem is NP-hard; it is computationally challenging due to the large size of the transportation network. Previous work is limited to a single or two different types of service centers, but cannot be generalized to deal with k different resource types. We propose a novel approach for MRNVD that can efficiently identify the best routes to obtain the k different resources. Experiments and a case study using real-world datasets demonstrate that the proposed approach creates MRNVD and significantly reduces the computational cost

    Integrated spatial analysis of volunteered geographic information

    Get PDF
    Volunteered Geographic Information (VGI) is becoming a pervasive form of data within geographic academic research. VGI offers a relatively new form of data, one with both potential as a sensitive way to collect information about the world, and challenges associated with unknown and heterogeneous data quality. The lack of sampling control, variable expertise in data collection and handling, and limited control over data sources are significant research challenges. In this thesis, data quality of VGI is tackled as a general composite measure based on coverage of the dataset, the evenness in the density of data, and the relative evenness in contributors to a given dataset. A metric is formulated which measures these properties for VGI point pattern data. The utility of the metric for discriminating qualitatively different types of VGI is evaluated for different forms of VGI, based on a relative comparison framework. The metric is used to optimize both the spatial grains and spatial extents of several VGI study areas. General methods are created to support the assessment of data quality of VGI datasets at several spatial scales

    Application of Geographic Information Systems

    Get PDF
    The importance of Geographic Information Systems (GIS) can hardly be overemphasized in today’s academic and professional arena. More professionals and academics have been using GIS than ever – urban & regional planners, civil engineers, geographers, spatial economists, sociologists, environmental scientists, criminal justice professionals, political scientists, and alike. As such, it is extremely important to understand the theories and applications of GIS in our teaching, professional work, and research. “The Application of Geographic Information Systems” presents research findings that explain GIS’s applications in different subfields of social sciences. With several case studies conducted in different parts of the world, the book blends together the theories of GIS and their practical implementations in different conditions. It deals with GIS’s application in the broad spectrum of geospatial analysis and modeling, water resources analysis, land use analysis, infrastructure network analysis like transportation and water distribution network, and such. The book is expected to be a useful source of knowledge to the users of GIS who envision its applications in their teaching and research. This easy-to-understand book is surely not the end in itself but a little contribution to toward our understanding of the rich and wonderful subject of GIS

    Quantitative Comparison of UAS-Borne LiDAR Systems for High-Resolution Forested Wetland Mapping

    Get PDF
    Wetlands provide critical ecosystem services across a range of environmental gradients and are at heightened risk of degradation from anthropogenic pressures and continued development, especially in coastal regions. There is a growing need for high-resolution (spatially and temporally) habitat identification and precise delineation of wetlands across a variety of stakeholder groups, including wetlands loss mitigation programs. Traditional wetland delineations are costly, time-intensive and can physically degrade the systems that are being surveyed, while aerial surveys are relatively fast and relatively unobtrusive. To assess the efficacy and feasibility of using two variable-cost LiDAR sensors mounted on a commercial hexacopter unmanned aerial system (UAS) in deriving high resolution topography, we conducted nearly concomitant flights over a site located in the Atlantic Coastal plain that contains a mix of palustrine forested wetlands, upland coniferous forest, upland grass and bare ground/dirt roads. We compared point clouds and derived topographic metrics acquired using the Quanergy M8 and the Velodyne HDL-32E LiDAR sensors with airborne LiDAR and results showed that the less expensive and lighter payload sensor outperforms the more expensive one in deriving high resolution, high accuracy ground elevation measurements under a range of canopy cover densities and for metrics of point cloud density and digital terrain computed both globally and locally using variable size tessellations. The mean point cloud density was not significantly different between wetland and non-wetland areas, but the two sensors were significantly different by wetland/non-wetland type. Ultra-high-resolution LiDAR-derived topography models can fill evolving wetlands mapping needs and increase accuracy and efficiency of detection and prediction of sensitive wetland ecosystems, especially for heavily forested coastal wetland systems

    Catastrophe Insurance: Estimation of the Generalized Tail Distortion Risk Measure and Earthquake and Wildfire Insurance Risk Modeling

    Get PDF
    In this thesis, we focus on catastrophic events in the context of insurance and risk management. Insurance risk arising from catastrophes such as earthquakes is one of the components of the Minimum Capital Test for federally regulated property and casualty insurance companies. Given the spatial heterogeneity of earthquakes, the ability to assess whether the fits are adequate in certain locations is crucial in obtaining usable models. Accordingly, we extend the use of Voronoi residuals to calculate deviance Voronoi residuals. We also create a simulation-based approach, in which losses and insurance claim payments are calculated by relying on earthquake hazard maps of Canada. As an alternative to the current guidelines of OSFI, a formula to calculate the country-wide minimum capital test is proposed based on the correlation between the provinces. Finally, an interactive web application is provided which allows the user to simulate earthquake financial losses. %damage and the resulting financial losses and insurance claims.%, at a chosen epicenter location. Homeowners' insurance in wildfire-prone areas can be a very risky business that some insurers may not be willing to undertake. We create an actuarial spatial model for the likelihood of wildfire occurrence over a fine grid map of North America. Several models are used, such as generalized linear models and tree-based machine learning algorithms. A detailed analysis and comparison of the models show a best fit using random forests. Sensitivity tests help in assessing the effect of future changes in the covariates of the model. A downscaling exercise is performed, focusing on some high-risk states and provinces. The model provides the foundation for actuaries to price, reserve, and manage the financial risk from severe wildfires. We explore the first and second-order asymptotic expansions of the generalized tail distortion risk measure for extreme risks. We propose to use the first-order asymptotic expansion to provide an estimator for this risk measure. The asymptotic normality of the estimator at intermediate and extreme confidence levels are shown, separately. Additionally, we provide bias-corrected estimators, where we focus on the case where the tail index is estimated by the Hill estimator. We perform a simulation study to assess the performances of the proposed estimators proposed and we compare them with other estimators in the literature. Finally, we showcase out estimator on several real-life actuarial data sets

    Déploiement optimal de réseaux de capteurs dans des environnements intérieurs en support à la navigation des personnes à mobilité réduite

    Get PDF
    La participation sociale des personnes ayant une incapacité (PAI) est l'un des enjeux majeurs de notre société. La participation sociale des PAI est influencée par les résultats des interactions entre les facteurs personnels et les facteurs environnementaux (physiques et sociaux). L'une des activités quotidiennes les plus importantes en milieu urbain est la mobilité, ce qui est fondamental pour la participation sociale des PAI. L'environnement urbain est composé des infrastructures et des services principalement conçus pour les personnes sans incapacités et ne prend pas en compte les besoins spécifiques des PAI. Dans ce contexte, la conception et le développement des environnements intelligents peuvent contribuer à une meilleure mobilité et participation sociale des PAI grâce à l'avancement récent de technologie de l'information et de télécommunication ainsi que de réseaux de capteurs. Cependant, le déploiement de réseaux de capteurs en tant que technologie d'assistance pour améliorer la mobilité des personnes n'est conçu que sur la base des modèles trop simplistes de l'environnement physique. Bien que des approches de déploiement de réseaux de capteurs aient été développées ces dernières années, la plupart d'entre elles ont considéré le modèle simple des capteurs (cercle ou sphérique dans le meilleur des cas) et l'environnement 2D, (sans obstacle), indépendamment des besoins des PAI lors de leur mobilité. À cet égard, l'objectif global de cette thèse est le déploiement optimal de réseau de capteurs dans un environnement intérieur pour améliorer l'efficacité de la mobilité des personnes à mobilité réduite (PMR). Plus spécifiquement, nous sommes intéressés à la mobilité des personnes utilisatrices de fauteuil roulant manuel. Pour atteindre cet objectif global, trois objectifs spécifiques sont identifiés. Premièrement, nous proposons un cadre conceptuel pour l'évaluation de la lisibilité de l'environnement intérieur pour les PMR, afin de déterminer la méthode appropriée pour évaluer les interactions entre les facteurs personnels et les facteurs environnementaux (par exemple, pentes, rampes, marches, etc.). Deuxièmement, nous développons un algorithme d'optimisation locale basé sur la structure Voronoi 3D pour le déploiement de capteurs dans l'environnement intérieur 3D pour s'attaquer à la complexité de la structure de l'environnement intérieur (par exemple, différentes hauteurs de plafonds) afin de maximiser la couverture du réseau. Troisièmement, pour aider la mobilité des PMR, nous développons un algorithme d'optimisation ciblé pour le déploiement de capteurs multi-types dans l'environnement intérieur en tenant compte du cadre d'évaluation de la lisibilité pour les PMR. La question la plus importante de cette recherche est la suivante : quels sont les emplacements optimaux pour un ensemble des capteurs pour le positionnement et le guidage des PMR dans l'environnement intérieur complexe 3D. Pour répondre à cette question, les informations sur les caractéristiques des capteurs, les éléments environnementaux et la lisibilité des PMR ont été intégrés dans les algorithmes d'optimisation locale pour le déploiement de réseaux de capteurs multi-types, afin d'améliorer la couverture du réseau et d'aider efficacement les PMR lors de leur mobilité. Dans ce processus, le diagramme de Voronoi 3D, en tant que structure géométrique, est utilisé pour optimiser l'emplacement des capteurs en fonction des caractéristiques des capteurs, des éléments environnementaux et de la lisibilité des PMR. L'optimisation locale proposée a été mise en œuvre et testée avec plusieurs scénarios au Centre des congrès de Québec. La comparaison des résultats obtenus avec ceux des autres algorithmes démontre une plus grande efficacité de l'approche proposée dans cette recherche.Social participation of people with disabilities (PWD) is one of the challenging problems in our society. Social participation of PWD is influenced by results from the interactions between personal characteristics and the physical and social environments. One of the most significant daily activities in the urban environment is mobility which impacts on the social participation of PWD. The urban environment includes infrastructure and services are mostly designed for people without any disability and does not consider the specific needs of PWD. In this context, the design and development of intelligent environments can contribute to better mobility and social participation of PWD by leveraging the recent advancement in information and telecommunications technologies as well as sensor networks. Sensor networks, as an assistive technology for improving the mobility of people are generally designed based on the simplistic models of physical environment. Although sensor networks deployment approaches have been developed in recent years, the majority of them have considered the simple model of sensors (circle or spherical in the best case) and the environment (2D, without obstacles) regardless of the PWD needs during their mobility. In this regard, the global objective of this thesis is the determination of the position and type of sensors to enhance the efficiency of the people with motor disabilities (PWMD) mobility. We are more specifically interested in the mobility of people using manual wheelchair. To achieve this global objective, three specific objectives are demarcated. First, a framework is developed for legibility assessment of the indoor environment for PWMD to determine the appropriate method to evaluate the interactions between personal factors with environmental factors (e.g. slops, ramps, steps, etc.). Then, a local optimization algorithm based on 3D Voronoi structure for sensor deployment in the 3D indoor environment is developed to tackle the complexity of structure of indoor environment (e.g., various ceilings' height) to maximize the network coverage. Next, a purpose-oriented optimization algorithm for multi-type sensor deployment in the indoor environment to help the PWMD mobility is developed with consideration of the legibility assessment framework for PWMD. In this thesis, the most important question of this research is where the optimal places of sensors are for efficient guidance of the PWMD in their mobility in 3D complex indoor environments. To answer this question, the information of sensors characteristics, environmental elements and legibility of PWMD have been integrated into the local optimization algorithms for multi-type sensor networks deployment to enhance the network coverage as well as efficiently help the PWMD during their mobility. In this process, Voronoi diagram as a geometrical structure is used to change the sensors' location based on the sensor characteristics, environmental elements and legibility of PWMD. The proposed local optimization is implemented and tested for several scenarios in Quebec City Convention Centre. The obtained results show that these integration in our approach enhance its effectiveness compared to the existing methods

    GIS and optimisation:potential benefits for emergency facility location in humanitarian logistics

    Get PDF
    Floods are one of the most dangerous and common disasters worldwide, and these disasters are closely linked to the geography of the affected area. As a result, several papers in the academic field of humanitarian logistics have incorporated the use of Geographical Information Systems (GIS) for disaster management. However, most of the contributions in the literature are using these systems for network analysis and display, with just a few papers exploiting the capabilities of GIS to improve planning and preparedness. To show the capabilities of GIS for disaster management, this paper uses raster GIS to analyse potential flooding scenarios and provide input to an optimisation model. The combination is applied to two real-world floods in Mexico to evaluate the value of incorporating GIS for disaster planning. The results provide evidence that including GIS analysis for a decision-making tool in disaster management can improve the outcome of disaster operations by reducing the number of facilities used at risk of flooding. Empirical results imply the importance of the integration of advanced remote sensing images and GIS for future systems in humanitarian logistics
    • …
    corecore